import gradio as gr import PyPDF2 from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain.vectorstores import Chroma from langchain.memory import ChatMessageHistory, ConversationBufferMemory from langchain_groq import ChatGroq from langchain.chains import ConversationalRetrievalChain from langchain_community.document_loaders import WebBaseLoader import os # Function to process text and create ConversationalRetrievalChain def process_text_and_create_chain(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) texts = text_splitter.split_text(text) metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))] model_name = "BAAI/bge-small-en" model_kwargs = {"device": "cpu"} encode_kwargs = {"normalize_embeddings": True} hf = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) db = Chroma.from_texts(texts, hf, metadatas=metadatas) message_history = ChatMessageHistory() memory = ConversationBufferMemory( memory_key="chat_history", output_key="answer", chat_memory=message_history, return_messages=True, ) llm_groq = ChatGroq( groq_api_key="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", model_name='mixtral-8x7b-32768' ) chain = ConversationalRetrievalChain.from_llm( llm=llm_groq, chain_type="stuff", retriever=db.as_retriever(), memory=memory, return_source_documents=True, ) return chain # Initialize global variables global_chain = None # Function to handle PDF upload def handle_pdf_upload(file): if file is None: return "No file uploaded. Please upload a PDF file.", gr.update(visible=False), gr.update(visible=True) if not file.name.lower().endswith('.pdf'): return "Error: Please upload a PDF file.", gr.update(visible=False), gr.update(visible=True) try: print(f"Processing file: {file.name}") pdf_reader = PyPDF2.PdfReader(file.name) pdf_text = "" for page in pdf_reader.pages: pdf_text += page.extract_text() global global_chain global_chain = process_text_and_create_chain(pdf_text) return "PDF processed successfully.", gr.update(visible=True), gr.update(visible=False) except Exception as e: print(f"Error processing PDF: {str(e)}") return f"Error processing PDF: {str(e)}", gr.update(visible=False), gr.update(visible=True) # Function to handle link input def handle_link_input(link): try: loader = WebBaseLoader(link) data = loader.load() doc = "\n".join([doc.page_content for doc in data]) global global_chain global_chain = process_text_and_create_chain(doc) return "Link processed successfully.", gr.update(visible=True), gr.update(visible=False) except Exception as e: print(f"Error processing link: {str(e)}") return f"Error processing link: {str(e)}", gr.update(visible=False), gr.update(visible=True) # Function to handle user query def handle_query(query, chatbot): if global_chain is None: return chatbot + [("Bot", "Please provide input first.")] try: result = global_chain({"question": query}) return chatbot + [("You", query), ("System", result['answer'])] except Exception as e: print(f"Error processing query: {str(e)}") return chatbot + [("Bot", f"Error: {str(e)}")] # Function to toggle input method def toggle_input_method(input_method): if input_method == "Upload PDF": return gr.update(visible=True), gr.update(visible=False) elif input_method == "Paste Link": return gr.update(visible=False), gr.update(visible=True) else: return gr.update(visible=False), gr.update(visible=False) # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Chat-With-Context") with gr.Row(): input_method = gr.Radio(["Upload PDF", "Paste Link"], label="Choose Input Method", interactive=True) with gr.Row(visible=False) as upload_section: pdf_input = gr.File(label="Upload PDF") upload_button = gr.Button("Process PDF") with gr.Row(visible=False) as text_input_section: text_input = gr.Textbox(label="Paste Link") submit_text_button = gr.Button("Process Link") input_status = gr.Textbox(label="Status", interactive=False) with gr.Row(visible=False) as chat_section: chatbot = gr.Chatbot(label="Chat") query_input = gr.Textbox(label="Write Your Question", placeholder="Message Chat-With-Context") send_button = gr.Button("Send") input_method.change(toggle_input_method, inputs=input_method, outputs=[upload_section, text_input_section]) upload_button.click(fn=handle_pdf_upload, inputs=pdf_input, outputs=[input_status, chat_section, upload_section]) submit_text_button.click(fn=handle_link_input, inputs=text_input, outputs=[input_status, chat_section, text_input_section]) send_button.click(fn=handle_query, inputs=[query_input, chatbot], outputs=chatbot) demo.launch(share=True)