Spaces:
Running
Running
import json | |
import os | |
import pathlib | |
import sys | |
import time | |
from typing import Any, Dict, List | |
import pinecone # cloud-hosted vector database for context retrieval | |
# for vector search | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import Pinecone | |
from dotenv import load_dotenv | |
from PIL import Image | |
from transformers import (AutoModelForSequenceClassification, AutoTokenizer, GPT2Tokenizer, OPTForCausalLM, T5ForConditionalGeneration) | |
PINECONE_API_KEY="insert your pinecone api key here" | |
class Retrieval: | |
def __init__(self, | |
device='cuda', | |
use_clip=True): | |
self.user_question = '' | |
self.max_text_length = None | |
self.pinecone_index_name = 'uiuc-chatbot' # uiuc-chatbot-v2 | |
self.use_clip = use_clip | |
# init parameters | |
self.device = device | |
self.num_answers_generated = 3 | |
self.vectorstore = None | |
def _load_pinecone_vectorstore(self,): | |
model_name = "intfloat/e5-large" # best text embedding model. 1024 dims. | |
pincecone_index = pinecone.Index("uiuc-chatbot") | |
embeddings = HuggingFaceEmbeddings(model_name=model_name) | |
#pinecone.init(api_key=os.environ['PINECONE_API_KEY'], environment="us-west1-gcp") | |
pinecone.init(api_key=PINECONE_API_KEY, environment="us-west1-gcp") | |
print(pinecone.list_indexes()) | |
self.vectorstore = Pinecone(index=pincecone_index, embedding_function=embeddings.embed_query, text_key="text") | |
def retrieve_contexts_from_pinecone(self, user_question: str, topk: int = None) -> List[Any]: | |
''' | |
Invoke Pinecone for vector search. These vector databases are created in the notebook `data_formatting_patel.ipynb` and `data_formatting_student_notes.ipynb`. | |
Returns a list of LangChain Documents. They have properties: `doc.page_content`: str, doc.metadata['page_number']: int, doc.metadata['textbook_name']: str. | |
''' | |
print("USER QUESTION: ", user_question) | |
print("TOPK: ", topk) | |
if topk is None: | |
topk = self.num_answers_generated | |
# similarity search | |
top_context_list = self.vectorstore.similarity_search(user_question, k=topk) | |
# add the source info to the bottom of the context. | |
top_context_metadata = [f"Source: page {doc.metadata['page_number']} in {doc.metadata['textbook_name']}" for doc in top_context_list] | |
relevant_context_list = [f"{text.page_content}. {meta}" for text, meta in zip(top_context_list, top_context_metadata)] | |
return relevant_context_list | |