Spaces:
Running
Running
star_nox
commited on
Commit
·
c1d7a66
1
Parent(s):
e5f680f
added context retrieval
Browse files- __pycache__/retrieval.cpython-310.pyc +0 -0
- app.py +11 -3
- retrieval.py +66 -0
__pycache__/retrieval.cpython-310.pyc
ADDED
Binary file (2.91 kB). View file
|
|
app.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import gradio as gr
|
4 |
-
|
5 |
from text_generation import Client, InferenceAPIClient
|
6 |
|
|
|
|
|
|
|
|
|
7 |
openchat_preprompt = (
|
8 |
"\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for "
|
9 |
"fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
|
@@ -110,7 +112,13 @@ def predict(
|
|
110 |
for i in range(0, len(history) - 1, 2)
|
111 |
]
|
112 |
yield chat, history
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def reset_textbox():
|
116 |
return gr.update(value="")
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
|
|
3 |
from text_generation import Client, InferenceAPIClient
|
4 |
|
5 |
+
import retrieval
|
6 |
+
|
7 |
+
NUM_ANSWERS_GENERATED = 3
|
8 |
+
|
9 |
openchat_preprompt = (
|
10 |
"\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for "
|
11 |
"fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
|
|
|
112 |
for i in range(0, len(history) - 1, 2)
|
113 |
]
|
114 |
yield chat, history
|
115 |
+
|
116 |
+
# add context retrieval part here
|
117 |
+
ta = retrieval.Retrieval()
|
118 |
+
ta._load_pinecone_vectorstore()
|
119 |
+
question = inputs
|
120 |
+
top_context_list = ta.retrieve_contexts_from_pinecone(user_question=question, topk=NUM_ANSWERS_GENERATED)
|
121 |
+
print(top_context_list)
|
122 |
|
123 |
def reset_textbox():
|
124 |
return gr.update(value="")
|
retrieval.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
import sys
|
5 |
+
import time
|
6 |
+
from typing import Any, Dict, List
|
7 |
+
|
8 |
+
import pinecone # cloud-hosted vector database for context retrieval
|
9 |
+
# for vector search
|
10 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
+
from langchain.vectorstores import Pinecone
|
12 |
+
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
|
15 |
+
from PIL import Image
|
16 |
+
from transformers import (AutoModelForSequenceClassification, AutoTokenizer, GPT2Tokenizer, OPTForCausalLM, T5ForConditionalGeneration)
|
17 |
+
|
18 |
+
PINECONE_API_KEY="insert your pinecone api key here"
|
19 |
+
|
20 |
+
class Retrieval:
|
21 |
+
def __init__(self,
|
22 |
+
device='cuda',
|
23 |
+
use_clip=True):
|
24 |
+
|
25 |
+
self.user_question = ''
|
26 |
+
self.max_text_length = None
|
27 |
+
self.pinecone_index_name = 'uiuc-chatbot' # uiuc-chatbot-v2
|
28 |
+
self.use_clip = use_clip
|
29 |
+
|
30 |
+
# init parameters
|
31 |
+
self.device = device
|
32 |
+
self.num_answers_generated = 3
|
33 |
+
|
34 |
+
self.vectorstore = None
|
35 |
+
|
36 |
+
def _load_pinecone_vectorstore(self,):
|
37 |
+
model_name = "intfloat/e5-large" # best text embedding model. 1024 dims.
|
38 |
+
pincecone_index = pinecone.Index("uiuc-chatbot")
|
39 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
40 |
+
#pinecone.init(api_key=os.environ['PINECONE_API_KEY'], environment="us-west1-gcp")
|
41 |
+
pinecone.init(api_key=PINECONE_API_KEY, environment="us-west1-gcp")
|
42 |
+
|
43 |
+
print(pinecone.list_indexes())
|
44 |
+
|
45 |
+
self.vectorstore = Pinecone(index=pincecone_index, embedding_function=embeddings.embed_query, text_key="text")
|
46 |
+
|
47 |
+
|
48 |
+
def retrieve_contexts_from_pinecone(self, user_question: str, topk: int = None) -> List[Any]:
|
49 |
+
'''
|
50 |
+
Invoke Pinecone for vector search. These vector databases are created in the notebook `data_formatting_patel.ipynb` and `data_formatting_student_notes.ipynb`.
|
51 |
+
Returns a list of LangChain Documents. They have properties: `doc.page_content`: str, doc.metadata['page_number']: int, doc.metadata['textbook_name']: str.
|
52 |
+
'''
|
53 |
+
print("USER QUESTION: ", user_question)
|
54 |
+
print("TOPK: ", topk)
|
55 |
+
|
56 |
+
|
57 |
+
if topk is None:
|
58 |
+
topk = self.num_answers_generated
|
59 |
+
|
60 |
+
# similarity search
|
61 |
+
top_context_list = self.vectorstore.similarity_search(user_question, k=topk)
|
62 |
+
|
63 |
+
# add the source info to the bottom of the context.
|
64 |
+
top_context_metadata = [f"Source: page {doc.metadata['page_number']} in {doc.metadata['textbook_name']}" for doc in top_context_list]
|
65 |
+
relevant_context_list = [f"{text.page_content}. {meta}" for text, meta in zip(top_context_list, top_context_metadata)]
|
66 |
+
return relevant_context_list
|