Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import matplotlib.animation as animation | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from scipy.integrate import quad_vec | |
from math import tau | |
import os | |
def fourier_transform_drawing(input_image, output_animation, frames, coefficients): | |
# Convert input_image to an OpenCV image | |
input_image = np.array(input_image) | |
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) | |
# processing | |
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
blurred = cv2.GaussianBlur(imgray, (7, 7), 0) | |
(T, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) | |
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
largest_contour_idx = np.argmax([len(c) for c in contours]) | |
verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()] | |
xs, ys = zip(*verts) | |
xs = np.asarray(xs) - np.mean(xs) | |
ys = - np.asarray(ys) + np.mean(ys) | |
t_list = np.linspace(0, tau, len(xs)) | |
# Compute the Fourier coefficients | |
def f(t, t_list, xs, ys): | |
return np.interp(t, t_list, xs + 1j*ys) | |
def compute_cn(f, n): | |
coef = 1/tau*quad_vec( | |
lambda t: f(t, t_list, xs, ys)*np.exp(-n*t*1j), | |
0, | |
tau, | |
limit=100, | |
full_output=False)[0] | |
return coef | |
N = coefficients | |
coefs = [(compute_cn(f, 0), 0)] + [(compute_cn(f, j), j) for i in range(1, N+1) for j in (i, -i)] | |
# animate the drawings | |
fig, ax = plt.subplots() | |
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N+1)] | |
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N+1)] | |
drawing, = ax.plot([], [], 'r-', linewidth=2) | |
ax.set_xlim(-500, 500) | |
ax.set_ylim(-500, 500) | |
ax.set_axis_off() | |
ax.set_aspect('equal') | |
fig.set_size_inches(15, 15) | |
draw_x, draw_y = [], [] | |
def animate(i, coefs, time): | |
t = time[i] | |
coefs = [(c * np.exp(1j*(fr * tau * t)), fr) for c, fr in coefs] | |
center = (0, 0) | |
for c, _ in coefs: | |
r = np.linalg.norm(c) | |
theta = np.linspace(0, tau, 80) | |
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta) | |
circle_lines[_].set_data([center[0], center[0]+np.real(c)], [center[1], center[1]+np.imag(c)]) | |
circles[_].set_data(x, y) | |
center = (center[0] + np.real(c), center[1] + np.imag(c)) | |
draw_x.append(center[0]) | |
draw_y.append(center[1]) | |
drawing.set_data(draw_x, draw_y) | |
drawing_time = 1 | |
time = np.linspace(0, drawing_time, num=frames) | |
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time)) | |
anim.save(output_animation, fps=15) | |
plt.close(fig) | |
return output_animation | |
# Gradio interface | |
interface = gr.Interface( | |
fn=fourier_transform_drawing, | |
inputs=[ | |
gr.Image(label="Input Image"), | |
gr.Textbox(default="output.mp4", label="Output Animation Path"), | |
gr.Slider(minimum=10, maximum=500, default=300, label="Number of Frames"), | |
gr.Slider(minimum=10, maximum=500, default=300, label="Number of Coefficients") | |
], | |
outputs="file", | |
title="Fourier Transform Drawing", | |
description="Upload an image and generate a Fourier Transform drawing animation." | |
) | |
if __name__ == "__main__": | |
interface.launch() |