Spaces:
Running
Running
File size: 3,398 Bytes
c77c587 8c7af92 c77c587 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import cv2
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import quad_vec
from math import tau
import os
def fourier_transform_drawing(input_image, output_animation, frames, coefficients):
# Convert input_image to an OpenCV image
input_image = np.array(input_image)
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
# processing
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(imgray, (7, 7), 0)
(T, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
largest_contour_idx = np.argmax([len(c) for c in contours])
verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()]
xs, ys = zip(*verts)
xs = np.asarray(xs) - np.mean(xs)
ys = - np.asarray(ys) + np.mean(ys)
t_list = np.linspace(0, tau, len(xs))
# Compute the Fourier coefficients
def f(t, t_list, xs, ys):
return np.interp(t, t_list, xs + 1j*ys)
def compute_cn(f, n):
coef = 1/tau*quad_vec(
lambda t: f(t, t_list, xs, ys)*np.exp(-n*t*1j),
0,
tau,
limit=100,
full_output=False)[0]
return coef
N = coefficients
coefs = [(compute_cn(f, 0), 0)] + [(compute_cn(f, j), j) for i in range(1, N+1) for j in (i, -i)]
# animate the drawings
fig, ax = plt.subplots()
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N+1)]
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N+1)]
drawing, = ax.plot([], [], 'r-', linewidth=2)
ax.set_xlim(-500, 500)
ax.set_ylim(-500, 500)
ax.set_axis_off()
ax.set_aspect('equal')
fig.set_size_inches(15, 15)
draw_x, draw_y = [], []
def animate(i, coefs, time):
t = time[i]
coefs = [(c * np.exp(1j*(fr * tau * t)), fr) for c, fr in coefs]
center = (0, 0)
for c, _ in coefs:
r = np.linalg.norm(c)
theta = np.linspace(0, tau, 80)
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
circle_lines[_].set_data([center[0], center[0]+np.real(c)], [center[1], center[1]+np.imag(c)])
circles[_].set_data(x, y)
center = (center[0] + np.real(c), center[1] + np.imag(c))
draw_x.append(center[0])
draw_y.append(center[1])
drawing.set_data(draw_x, draw_y)
drawing_time = 1
time = np.linspace(0, drawing_time, num=frames)
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time))
anim.save(output_animation, fps=15)
plt.close(fig)
return output_animation
# Gradio interface
interface = gr.Interface(
fn=fourier_transform_drawing,
inputs=[
gr.Image(label="Input Image"),
gr.Textbox(default="output.mp4", label="Output Animation Path"),
gr.Slider(minimum=10, maximum=500, default=300, label="Number of Frames"),
gr.Slider(minimum=10, maximum=500, default=300, label="Number of Coefficients")
],
outputs="file",
title="Fourier Transform Drawing",
description="Upload an image and generate a Fourier Transform drawing animation."
)
if __name__ == "__main__":
interface.launch() |