eleftherias's picture
migrate to poetry (#2)
c222ee6 verified
raw
history blame
11.4 kB
import logging
import gradio as gr
import pandas as pd
from apscheduler.executors.pool import ThreadPoolExecutor
from apscheduler.jobstores.memory import MemoryJobStore
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# Configure Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Scheduler
scheduler = BackgroundScheduler(
jobstores={"default": MemoryJobStore()},
executors={"default": ThreadPoolExecutor(10)},
job_defaults={"coalesce": False, "max_instances": 1},
)
scheduler.start()
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
logger.info(f"Downloading evaluation requests from {QUEUE_REPO} to {EVAL_REQUESTS_PATH}")
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
try:
logger.info(f"Downloading evaluation results from {RESULTS_REPO} to {EVAL_RESULTS_PATH}")
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def start_evaluation(row):
logger.info(f"Starting evaluation for row ID {row.get('id')}")
# Implementation to start evaluation
pass
def monitor_evaluation(row):
logger.info(f"Monitoring evaluation for row ID {row.get('id')}")
# Implementation to monitor evaluation
pass
def initiate_new_evaluation(row):
logger.info(f"Initiating new evaluation for row ID {row.get('id')}")
# Implementation to initiate new evaluation
pass
def finalize_evaluation(row):
logger.info(f"Finalizing evaluation for row ID {row.get('id')}")
# Implementation to finalize evaluation
pass
def process_evaluation_queue():
"""Process pending evaluation requests."""
logger.info("Starting processing of evaluation queue")
try:
# Retrieve evaluation queues
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
EVAL_REQUESTS_PATH, EVAL_COLS
)
# Assign statuses to each DataFrame
finished_eval_queue_df["status"] = "FINISHED"
running_eval_queue_df["status"] = "RUNNING"
pending_eval_queue_df["status"] = "PENDING"
# Handle PENDING_NEW_EVAL
if "needs_new_eval" in pending_eval_queue_df.columns:
pending_new_eval_df = pending_eval_queue_df[pending_eval_queue_df["needs_new_eval"]].copy()
pending_new_eval_df["status"] = "PENDING_NEW_EVAL"
pending_eval_queue_df = pending_eval_queue_df[~pending_eval_queue_df["needs_new_eval"]]
else:
pending_new_eval_df = pd.DataFrame()
# Combine all queues into a single DataFrame
full_queue_df = pd.concat(
[finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, pending_new_eval_df],
ignore_index=True,
)
logger.debug(f"Combined queue has {len(full_queue_df)} entries")
# Process each entry based on status
for _, row in full_queue_df.iterrows():
status = row["status"]
logger.debug(f"Processing row ID {row.get('id')} with status {status}")
if status == "PENDING":
start_evaluation(row)
elif status == "RUNNING":
monitor_evaluation(row)
elif status == "PENDING_NEW_EVAL":
initiate_new_evaluation(row)
elif status == "FINISHED":
finalize_evaluation(row)
else:
logger.warning(f"Unknown status '{status}' for row ID {row.get('id')}")
logger.info("Completed processing of evaluation queue")
return finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
except Exception as e:
logger.error(f"Error processing evaluation queue: {e}", exc_info=True)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
"βœ… Finished Evaluations",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
"πŸ”„ Running Evaluation Queue",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
"⏳ Pending Evaluation Queue",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
# Process the evaluation queue every 2 minutes
timer = gr.Timer(120, active=True)
timer.tick(
process_evaluation_queue,
inputs=[],
outputs=[finished_eval_table, running_eval_table, pending_eval_table],
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
demo.queue(default_concurrency_limit=40).launch()