|
import logging |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.executors.pool import ThreadPoolExecutor |
|
from apscheduler.jobstores.memory import MemoryJobStore |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns |
|
from huggingface_hub import snapshot_download |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
Precision, |
|
WeightType, |
|
fields, |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
scheduler = BackgroundScheduler( |
|
jobstores={"default": MemoryJobStore()}, |
|
executors={"default": ThreadPoolExecutor(10)}, |
|
job_defaults={"coalesce": False, "max_instances": 1}, |
|
) |
|
scheduler.start() |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
|
|
try: |
|
logger.info(f"Downloading evaluation requests from {QUEUE_REPO} to {EVAL_REQUESTS_PATH}") |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, |
|
local_dir=EVAL_REQUESTS_PATH, |
|
repo_type="dataset", |
|
tqdm_class=None, |
|
etag_timeout=30, |
|
token=TOKEN, |
|
) |
|
except Exception: |
|
restart_space() |
|
try: |
|
logger.info(f"Downloading evaluation results from {RESULTS_REPO} to {EVAL_RESULTS_PATH}") |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, |
|
local_dir=EVAL_RESULTS_PATH, |
|
repo_type="dataset", |
|
tqdm_class=None, |
|
etag_timeout=30, |
|
token=TOKEN, |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
|
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
|
|
def init_leaderboard(dataframe): |
|
if dataframe is None or dataframe.empty: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
return Leaderboard( |
|
value=dataframe, |
|
datatype=[c.type for c in fields(AutoEvalColumn)], |
|
select_columns=SelectColumns( |
|
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], |
|
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], |
|
label="Select Columns to Display:", |
|
), |
|
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], |
|
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], |
|
filter_columns=[ |
|
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), |
|
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), |
|
ColumnFilter( |
|
AutoEvalColumn.params.name, |
|
type="slider", |
|
min=0.01, |
|
max=150, |
|
label="Select the number of parameters (B)", |
|
), |
|
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True), |
|
], |
|
bool_checkboxgroup_label="Hide models", |
|
interactive=False, |
|
) |
|
|
|
|
|
def start_evaluation(row): |
|
logger.info(f"Starting evaluation for row ID {row.get('id')}") |
|
|
|
pass |
|
|
|
|
|
def monitor_evaluation(row): |
|
logger.info(f"Monitoring evaluation for row ID {row.get('id')}") |
|
|
|
pass |
|
|
|
|
|
def initiate_new_evaluation(row): |
|
logger.info(f"Initiating new evaluation for row ID {row.get('id')}") |
|
|
|
pass |
|
|
|
|
|
def finalize_evaluation(row): |
|
logger.info(f"Finalizing evaluation for row ID {row.get('id')}") |
|
|
|
pass |
|
|
|
|
|
def process_evaluation_queue(): |
|
"""Process pending evaluation requests.""" |
|
logger.info("Starting processing of evaluation queue") |
|
try: |
|
|
|
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df( |
|
EVAL_REQUESTS_PATH, EVAL_COLS |
|
) |
|
|
|
|
|
finished_eval_queue_df["status"] = "FINISHED" |
|
running_eval_queue_df["status"] = "RUNNING" |
|
pending_eval_queue_df["status"] = "PENDING" |
|
|
|
|
|
if "needs_new_eval" in pending_eval_queue_df.columns: |
|
pending_new_eval_df = pending_eval_queue_df[pending_eval_queue_df["needs_new_eval"]].copy() |
|
pending_new_eval_df["status"] = "PENDING_NEW_EVAL" |
|
pending_eval_queue_df = pending_eval_queue_df[~pending_eval_queue_df["needs_new_eval"]] |
|
else: |
|
pending_new_eval_df = pd.DataFrame() |
|
|
|
|
|
full_queue_df = pd.concat( |
|
[finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, pending_new_eval_df], |
|
ignore_index=True, |
|
) |
|
|
|
logger.debug(f"Combined queue has {len(full_queue_df)} entries") |
|
|
|
|
|
for _, row in full_queue_df.iterrows(): |
|
status = row["status"] |
|
logger.debug(f"Processing row ID {row.get('id')} with status {status}") |
|
|
|
if status == "PENDING": |
|
start_evaluation(row) |
|
elif status == "RUNNING": |
|
monitor_evaluation(row) |
|
elif status == "PENDING_NEW_EVAL": |
|
initiate_new_evaluation(row) |
|
elif status == "FINISHED": |
|
finalize_evaluation(row) |
|
else: |
|
logger.warning(f"Unknown status '{status}' for row ID {row.get('id')}") |
|
|
|
logger.info("Completed processing of evaluation queue") |
|
return finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing evaluation queue: {e}", exc_info=True) |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
leaderboard = init_leaderboard(LEADERBOARD_DF) |
|
|
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
"β
Finished Evaluations", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
"π Running Evaluation Queue", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
"β³ Pending Evaluation Queue", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
|
|
timer = gr.Timer(120, active=True) |
|
timer.tick( |
|
process_evaluation_queue, |
|
inputs=[], |
|
outputs=[finished_eval_table, running_eval_table, pending_eval_table], |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightType], |
|
label="Weights type", |
|
multiselect=False, |
|
value="Original", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
weight_type, |
|
model_type, |
|
], |
|
submission_result, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
demo.queue(default_concurrency_limit=40).launch() |
|
|