File size: 11,373 Bytes
be6e576
c222ee6
b535ea0
 
be6e576
 
c222ee6
 
b535ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c222ee6
b535ea0
c222ee6
b535ea0
 
 
 
 
be6e576
 
 
 
 
 
c222ee6
 
 
be6e576
 
b535ea0
c222ee6
b535ea0
 
 
c222ee6
b535ea0
 
3f502ea
b535ea0
c222ee6
 
 
 
 
 
b535ea0
 
 
 
3f502ea
b535ea0
c222ee6
 
 
 
 
 
b535ea0
 
 
 
 
 
 
 
 
 
 
 
 
c222ee6
b535ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c222ee6
b535ea0
 
 
 
 
c222ee6
be6e576
 
 
 
 
c222ee6
be6e576
 
 
 
 
c222ee6
be6e576
 
 
 
 
c222ee6
be6e576
 
 
 
 
c222ee6
be6e576
 
 
 
 
c222ee6
 
 
be6e576
 
c222ee6
 
 
be6e576
 
c222ee6
 
 
 
be6e576
 
 
 
c222ee6
 
 
 
be6e576
 
 
 
 
c222ee6
be6e576
 
c222ee6
be6e576
c222ee6
be6e576
c222ee6
be6e576
c222ee6
be6e576
 
 
 
 
431363c
be6e576
 
 
b535ea0
c222ee6
b535ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c222ee6
b535ea0
 
 
 
 
 
 
 
 
 
c222ee6
 
b535ea0
 
 
 
 
 
 
 
 
 
c222ee6
b535ea0
 
 
 
 
 
 
 
 
431363c
 
 
c222ee6
 
 
 
 
431363c
b535ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c222ee6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import logging

import gradio as gr
import pandas as pd
from apscheduler.executors.pool import ThreadPoolExecutor
from apscheduler.jobstores.memory import MemoryJobStore
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    Precision,
    WeightType,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

# Configure Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize Scheduler
scheduler = BackgroundScheduler(
    jobstores={"default": MemoryJobStore()},
    executors={"default": ThreadPoolExecutor(10)},
    job_defaults={"coalesce": False, "max_instances": 1},
)
scheduler.start()


def restart_space():
    API.restart_space(repo_id=REPO_ID)


### Space initialisation
try:
    logger.info(f"Downloading evaluation requests from {QUEUE_REPO} to {EVAL_REQUESTS_PATH}")
    snapshot_download(
        repo_id=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()
try:
    logger.info(f"Downloading evaluation results from {RESULTS_REPO} to {EVAL_RESULTS_PATH}")
    snapshot_download(
        repo_id=RESULTS_REPO,
        local_dir=EVAL_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
            ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(
                AutoEvalColumn.params.name,
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


def start_evaluation(row):
    logger.info(f"Starting evaluation for row ID {row.get('id')}")
    # Implementation to start evaluation
    pass


def monitor_evaluation(row):
    logger.info(f"Monitoring evaluation for row ID {row.get('id')}")
    # Implementation to monitor evaluation
    pass


def initiate_new_evaluation(row):
    logger.info(f"Initiating new evaluation for row ID {row.get('id')}")
    # Implementation to initiate new evaluation
    pass


def finalize_evaluation(row):
    logger.info(f"Finalizing evaluation for row ID {row.get('id')}")
    # Implementation to finalize evaluation
    pass


def process_evaluation_queue():
    """Process pending evaluation requests."""
    logger.info("Starting processing of evaluation queue")
    try:
        # Retrieve evaluation queues
        finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
            EVAL_REQUESTS_PATH, EVAL_COLS
        )

        # Assign statuses to each DataFrame
        finished_eval_queue_df["status"] = "FINISHED"
        running_eval_queue_df["status"] = "RUNNING"
        pending_eval_queue_df["status"] = "PENDING"

        # Handle PENDING_NEW_EVAL
        if "needs_new_eval" in pending_eval_queue_df.columns:
            pending_new_eval_df = pending_eval_queue_df[pending_eval_queue_df["needs_new_eval"]].copy()
            pending_new_eval_df["status"] = "PENDING_NEW_EVAL"
            pending_eval_queue_df = pending_eval_queue_df[~pending_eval_queue_df["needs_new_eval"]]
        else:
            pending_new_eval_df = pd.DataFrame()

        # Combine all queues into a single DataFrame
        full_queue_df = pd.concat(
            [finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, pending_new_eval_df],
            ignore_index=True,
        )

        logger.debug(f"Combined queue has {len(full_queue_df)} entries")

        # Process each entry based on status
        for _, row in full_queue_df.iterrows():
            status = row["status"]
            logger.debug(f"Processing row ID {row.get('id')} with status {status}")

            if status == "PENDING":
                start_evaluation(row)
            elif status == "RUNNING":
                monitor_evaluation(row)
            elif status == "PENDING_NEW_EVAL":
                initiate_new_evaluation(row)
            elif status == "FINISHED":
                finalize_evaluation(row)
            else:
                logger.warning(f"Unknown status '{status}' for row ID {row.get('id')}")

        logger.info("Completed processing of evaluation queue")
        return finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df

    except Exception as e:
        logger.error(f"Error processing evaluation queue: {e}", exc_info=True)


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        "βœ… Finished Evaluations",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        "πŸ”„ Running Evaluation Queue",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        "⏳ Pending Evaluation Queue",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                # Process the evaluation queue every 2 minutes
                timer = gr.Timer(120, active=True)
                timer.tick(
                    process_evaluation_queue,
                    inputs=[],
                    outputs=[finished_eval_table, running_eval_table, pending_eval_table],
                )

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

demo.queue(default_concurrency_limit=40).launch()