File size: 11,373 Bytes
be6e576 c222ee6 b535ea0 be6e576 c222ee6 b535ea0 c222ee6 b535ea0 c222ee6 b535ea0 be6e576 c222ee6 be6e576 b535ea0 c222ee6 b535ea0 c222ee6 b535ea0 3f502ea b535ea0 c222ee6 b535ea0 3f502ea b535ea0 c222ee6 b535ea0 c222ee6 b535ea0 c222ee6 b535ea0 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 c222ee6 be6e576 431363c be6e576 b535ea0 c222ee6 b535ea0 c222ee6 b535ea0 c222ee6 b535ea0 c222ee6 b535ea0 431363c c222ee6 431363c b535ea0 c222ee6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import logging
import gradio as gr
import pandas as pd
from apscheduler.executors.pool import ThreadPoolExecutor
from apscheduler.jobstores.memory import MemoryJobStore
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# Configure Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Scheduler
scheduler = BackgroundScheduler(
jobstores={"default": MemoryJobStore()},
executors={"default": ThreadPoolExecutor(10)},
job_defaults={"coalesce": False, "max_instances": 1},
)
scheduler.start()
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
logger.info(f"Downloading evaluation requests from {QUEUE_REPO} to {EVAL_REQUESTS_PATH}")
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
try:
logger.info(f"Downloading evaluation results from {RESULTS_REPO} to {EVAL_RESULTS_PATH}")
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def start_evaluation(row):
logger.info(f"Starting evaluation for row ID {row.get('id')}")
# Implementation to start evaluation
pass
def monitor_evaluation(row):
logger.info(f"Monitoring evaluation for row ID {row.get('id')}")
# Implementation to monitor evaluation
pass
def initiate_new_evaluation(row):
logger.info(f"Initiating new evaluation for row ID {row.get('id')}")
# Implementation to initiate new evaluation
pass
def finalize_evaluation(row):
logger.info(f"Finalizing evaluation for row ID {row.get('id')}")
# Implementation to finalize evaluation
pass
def process_evaluation_queue():
"""Process pending evaluation requests."""
logger.info("Starting processing of evaluation queue")
try:
# Retrieve evaluation queues
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
EVAL_REQUESTS_PATH, EVAL_COLS
)
# Assign statuses to each DataFrame
finished_eval_queue_df["status"] = "FINISHED"
running_eval_queue_df["status"] = "RUNNING"
pending_eval_queue_df["status"] = "PENDING"
# Handle PENDING_NEW_EVAL
if "needs_new_eval" in pending_eval_queue_df.columns:
pending_new_eval_df = pending_eval_queue_df[pending_eval_queue_df["needs_new_eval"]].copy()
pending_new_eval_df["status"] = "PENDING_NEW_EVAL"
pending_eval_queue_df = pending_eval_queue_df[~pending_eval_queue_df["needs_new_eval"]]
else:
pending_new_eval_df = pd.DataFrame()
# Combine all queues into a single DataFrame
full_queue_df = pd.concat(
[finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, pending_new_eval_df],
ignore_index=True,
)
logger.debug(f"Combined queue has {len(full_queue_df)} entries")
# Process each entry based on status
for _, row in full_queue_df.iterrows():
status = row["status"]
logger.debug(f"Processing row ID {row.get('id')} with status {status}")
if status == "PENDING":
start_evaluation(row)
elif status == "RUNNING":
monitor_evaluation(row)
elif status == "PENDING_NEW_EVAL":
initiate_new_evaluation(row)
elif status == "FINISHED":
finalize_evaluation(row)
else:
logger.warning(f"Unknown status '{status}' for row ID {row.get('id')}")
logger.info("Completed processing of evaluation queue")
return finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
except Exception as e:
logger.error(f"Error processing evaluation queue: {e}", exc_info=True)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
"β
Finished Evaluations",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
"π Running Evaluation Queue",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
"β³ Pending Evaluation Queue",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
# Process the evaluation queue every 2 minutes
timer = gr.Timer(120, active=True)
timer.tick(
process_evaluation_queue,
inputs=[],
outputs=[finished_eval_table, running_eval_table, pending_eval_table],
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
demo.queue(default_concurrency_limit=40).launch()
|