|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Any, List, Tuple, Type |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from torch import nn, Tensor |
|
|
|
from .efficient_sam_decoder import MaskDecoder, PromptEncoder |
|
from .efficient_sam_encoder import ImageEncoderViT |
|
from .two_way_transformer import TwoWayAttentionBlock, TwoWayTransformer |
|
|
|
class EfficientSam(nn.Module): |
|
mask_threshold: float = 0.0 |
|
image_format: str = "RGB" |
|
|
|
def __init__( |
|
self, |
|
image_encoder: ImageEncoderViT, |
|
prompt_encoder: PromptEncoder, |
|
decoder_max_num_input_points: int, |
|
mask_decoder: MaskDecoder, |
|
pixel_mean: List[float] = [0.485, 0.456, 0.406], |
|
pixel_std: List[float] = [0.229, 0.224, 0.225], |
|
) -> None: |
|
""" |
|
SAM predicts object masks from an image and input prompts. |
|
|
|
Arguments: |
|
image_encoder (ImageEncoderViT): The backbone used to encode the |
|
image into image embeddings that allow for efficient mask prediction. |
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts. |
|
mask_decoder (MaskDecoder): Predicts masks from the image embeddings |
|
and encoded prompts. |
|
pixel_mean (list(float)): Mean values for normalizing pixels in the input image. |
|
pixel_std (list(float)): Std values for normalizing pixels in the input image. |
|
""" |
|
super().__init__() |
|
self.image_encoder = image_encoder |
|
self.prompt_encoder = prompt_encoder |
|
self.decoder_max_num_input_points = decoder_max_num_input_points |
|
self.mask_decoder = mask_decoder |
|
self.register_buffer( |
|
"pixel_mean", torch.Tensor(pixel_mean).view(1, 3, 1, 1), False |
|
) |
|
self.register_buffer( |
|
"pixel_std", torch.Tensor(pixel_std).view(1, 3, 1, 1), False |
|
) |
|
|
|
@torch.jit.export |
|
def predict_masks( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
batched_points: torch.Tensor, |
|
batched_point_labels: torch.Tensor, |
|
multimask_output: bool, |
|
input_h: int, |
|
input_w: int, |
|
output_h: int = -1, |
|
output_w: int = -1, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predicts masks given image embeddings and prompts. This only runs the decoder. |
|
|
|
Arguments: |
|
image_embeddings: A tensor of shape [B, C, H, W] or [B*max_num_queries, C, H, W] |
|
batched_points: A tensor of shape [B, max_num_queries, num_pts, 2] |
|
batched_point_labels: A tensor of shape [B, max_num_queries, num_pts] |
|
Returns: |
|
A tuple of two tensors: |
|
low_res_mask: A tensor of shape [B, max_num_queries, 256, 256] of predicted masks |
|
iou_predictions: A tensor of shape [B, max_num_queries] of estimated IOU scores |
|
""" |
|
|
|
batch_size, max_num_queries, num_pts, _ = batched_points.shape |
|
num_pts = batched_points.shape[2] |
|
rescaled_batched_points = self.get_rescaled_pts(batched_points, input_h, input_w) |
|
|
|
if num_pts > self.decoder_max_num_input_points: |
|
rescaled_batched_points = rescaled_batched_points[ |
|
:, :, : self.decoder_max_num_input_points, : |
|
] |
|
batched_point_labels = batched_point_labels[ |
|
:, :, : self.decoder_max_num_input_points |
|
] |
|
elif num_pts < self.decoder_max_num_input_points: |
|
rescaled_batched_points = F.pad( |
|
rescaled_batched_points, |
|
(0, 0, 0, self.decoder_max_num_input_points - num_pts), |
|
value=-1.0, |
|
) |
|
batched_point_labels = F.pad( |
|
batched_point_labels, |
|
(0, self.decoder_max_num_input_points - num_pts), |
|
value=-1.0, |
|
) |
|
|
|
sparse_embeddings = self.prompt_encoder( |
|
rescaled_batched_points.reshape( |
|
batch_size * max_num_queries, self.decoder_max_num_input_points, 2 |
|
), |
|
batched_point_labels.reshape( |
|
batch_size * max_num_queries, self.decoder_max_num_input_points |
|
), |
|
) |
|
|
|
sparse_embeddings = sparse_embeddings.view( |
|
batch_size, |
|
max_num_queries, |
|
sparse_embeddings.shape[1], |
|
sparse_embeddings.shape[2], |
|
) |
|
low_res_masks, iou_predictions = self.mask_decoder( |
|
image_embeddings, |
|
self.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
multimask_output=multimask_output, |
|
) |
|
_, num_predictions, low_res_size, _ = low_res_masks.shape |
|
|
|
if output_w > 0 and output_h > 0: |
|
output_masks = F.interpolate( |
|
low_res_masks, (output_h, output_w), mode="bicubic" |
|
) |
|
output_masks = torch.reshape( |
|
output_masks, |
|
(batch_size, max_num_queries, num_predictions, output_h, output_w), |
|
) |
|
else: |
|
output_masks = torch.reshape( |
|
low_res_masks, |
|
( |
|
batch_size, |
|
max_num_queries, |
|
num_predictions, |
|
low_res_size, |
|
low_res_size, |
|
), |
|
) |
|
iou_predictions = torch.reshape( |
|
iou_predictions, (batch_size, max_num_queries, num_predictions) |
|
) |
|
return output_masks, iou_predictions |
|
|
|
def get_rescaled_pts(self, batched_points: torch.Tensor, input_h: int, input_w: int): |
|
return torch.stack( |
|
[ |
|
torch.where( |
|
batched_points[..., 0] >= 0, |
|
batched_points[..., 0] * self.image_encoder.img_size / input_w, |
|
-1.0, |
|
), |
|
torch.where( |
|
batched_points[..., 1] >= 0, |
|
batched_points[..., 1] * self.image_encoder.img_size / input_h, |
|
-1.0, |
|
), |
|
], |
|
dim=-1, |
|
) |
|
|
|
@torch.jit.export |
|
def get_image_embeddings(self, batched_images) -> torch.Tensor: |
|
""" |
|
Predicts masks end-to-end from provided images and prompts. |
|
If prompts are not known in advance, using SamPredictor is |
|
recommended over calling the model directly. |
|
|
|
Arguments: |
|
batched_images: A tensor of shape [B, 3, H, W] |
|
Returns: |
|
List of image embeddings each of of shape [B, C(i), H(i), W(i)]. |
|
The last embedding corresponds to the final layer. |
|
""" |
|
batched_images = self.preprocess(batched_images) |
|
return self.image_encoder(batched_images) |
|
|
|
def forward( |
|
self, |
|
batched_images: torch.Tensor, |
|
batched_points: torch.Tensor, |
|
batched_point_labels: torch.Tensor, |
|
scale_to_original_image_size: bool = True, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predicts masks end-to-end from provided images and prompts. |
|
If prompts are not known in advance, using SamPredictor is |
|
recommended over calling the model directly. |
|
|
|
Arguments: |
|
batched_images: A tensor of shape [B, 3, H, W] |
|
batched_points: A tensor of shape [B, num_queries, max_num_pts, 2] |
|
batched_point_labels: A tensor of shape [B, num_queries, max_num_pts] |
|
|
|
Returns: |
|
A list tuples of two tensors where the ith element is by considering the first i+1 points. |
|
low_res_mask: A tensor of shape [B, 256, 256] of predicted masks |
|
iou_predictions: A tensor of shape [B, max_num_queries] of estimated IOU scores |
|
""" |
|
batch_size, _, input_h, input_w = batched_images.shape |
|
image_embeddings = self.get_image_embeddings(batched_images) |
|
return self.predict_masks( |
|
image_embeddings, |
|
batched_points, |
|
batched_point_labels, |
|
multimask_output=True, |
|
input_h=input_h, |
|
input_w=input_w, |
|
output_h=input_h if scale_to_original_image_size else -1, |
|
output_w=input_w if scale_to_original_image_size else -1, |
|
) |
|
|
|
def preprocess(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Normalize pixel values and pad to a square input.""" |
|
if ( |
|
x.shape[2] != self.image_encoder.img_size |
|
or x.shape[3] != self.image_encoder.img_size |
|
): |
|
x = F.interpolate( |
|
x, |
|
(self.image_encoder.img_size, self.image_encoder.img_size), |
|
mode="bilinear", |
|
) |
|
return (x - self.pixel_mean) / self.pixel_std |
|
|
|
|
|
def build_efficient_sam(encoder_patch_embed_dim, encoder_num_heads, checkpoint=None): |
|
img_size = 1024 |
|
encoder_patch_size = 16 |
|
encoder_depth = 12 |
|
encoder_mlp_ratio = 4.0 |
|
encoder_neck_dims = [256, 256] |
|
decoder_max_num_input_points = 6 |
|
decoder_transformer_depth = 2 |
|
decoder_transformer_mlp_dim = 2048 |
|
decoder_num_heads = 8 |
|
decoder_upscaling_layer_dims = [64, 32] |
|
num_multimask_outputs = 3 |
|
iou_head_depth = 3 |
|
iou_head_hidden_dim = 256 |
|
activation = "gelu" |
|
normalization_type = "layer_norm" |
|
normalize_before_activation = False |
|
|
|
assert activation == "relu" or activation == "gelu" |
|
if activation == "relu": |
|
activation_fn = nn.ReLU |
|
else: |
|
activation_fn = nn.GELU |
|
|
|
image_encoder = ImageEncoderViT( |
|
img_size=img_size, |
|
patch_size=encoder_patch_size, |
|
in_chans=3, |
|
patch_embed_dim=encoder_patch_embed_dim, |
|
normalization_type=normalization_type, |
|
depth=encoder_depth, |
|
num_heads=encoder_num_heads, |
|
mlp_ratio=encoder_mlp_ratio, |
|
neck_dims=encoder_neck_dims, |
|
act_layer=activation_fn, |
|
) |
|
|
|
image_embedding_size = image_encoder.image_embedding_size |
|
encoder_transformer_output_dim = image_encoder.transformer_output_dim |
|
|
|
sam = EfficientSam( |
|
image_encoder=image_encoder, |
|
prompt_encoder=PromptEncoder( |
|
embed_dim=encoder_transformer_output_dim, |
|
image_embedding_size=(image_embedding_size, image_embedding_size), |
|
input_image_size=(img_size, img_size), |
|
), |
|
decoder_max_num_input_points=decoder_max_num_input_points, |
|
mask_decoder=MaskDecoder( |
|
transformer_dim=encoder_transformer_output_dim, |
|
transformer=TwoWayTransformer( |
|
depth=decoder_transformer_depth, |
|
embedding_dim=encoder_transformer_output_dim, |
|
num_heads=decoder_num_heads, |
|
mlp_dim=decoder_transformer_mlp_dim, |
|
activation=activation_fn, |
|
normalize_before_activation=normalize_before_activation, |
|
), |
|
num_multimask_outputs=num_multimask_outputs, |
|
activation=activation_fn, |
|
normalization_type=normalization_type, |
|
normalize_before_activation=normalize_before_activation, |
|
iou_head_depth=iou_head_depth - 1, |
|
iou_head_hidden_dim=iou_head_hidden_dim, |
|
upscaling_layer_dims=decoder_upscaling_layer_dims, |
|
), |
|
pixel_mean=[0.485, 0.456, 0.406], |
|
pixel_std=[0.229, 0.224, 0.225], |
|
) |
|
if checkpoint is not None: |
|
with open(checkpoint, "rb") as f: |
|
state_dict = torch.load(f, map_location="cpu") |
|
sam.load_state_dict(state_dict["model"]) |
|
return sam |
|
|