File size: 11,644 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Any, List, Tuple, Type
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from .efficient_sam_decoder import MaskDecoder, PromptEncoder
from .efficient_sam_encoder import ImageEncoderViT
from .two_way_transformer import TwoWayAttentionBlock, TwoWayTransformer
class EfficientSam(nn.Module):
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
decoder_max_num_input_points: int,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = [0.485, 0.456, 0.406],
pixel_std: List[float] = [0.229, 0.224, 0.225],
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Arguments:
image_encoder (ImageEncoderViT): The backbone used to encode the
image into image embeddings that allow for efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.decoder_max_num_input_points = decoder_max_num_input_points
self.mask_decoder = mask_decoder
self.register_buffer(
"pixel_mean", torch.Tensor(pixel_mean).view(1, 3, 1, 1), False
)
self.register_buffer(
"pixel_std", torch.Tensor(pixel_std).view(1, 3, 1, 1), False
)
@torch.jit.export
def predict_masks(
self,
image_embeddings: torch.Tensor,
batched_points: torch.Tensor,
batched_point_labels: torch.Tensor,
multimask_output: bool,
input_h: int,
input_w: int,
output_h: int = -1,
output_w: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predicts masks given image embeddings and prompts. This only runs the decoder.
Arguments:
image_embeddings: A tensor of shape [B, C, H, W] or [B*max_num_queries, C, H, W]
batched_points: A tensor of shape [B, max_num_queries, num_pts, 2]
batched_point_labels: A tensor of shape [B, max_num_queries, num_pts]
Returns:
A tuple of two tensors:
low_res_mask: A tensor of shape [B, max_num_queries, 256, 256] of predicted masks
iou_predictions: A tensor of shape [B, max_num_queries] of estimated IOU scores
"""
batch_size, max_num_queries, num_pts, _ = batched_points.shape
num_pts = batched_points.shape[2]
rescaled_batched_points = self.get_rescaled_pts(batched_points, input_h, input_w)
if num_pts > self.decoder_max_num_input_points:
rescaled_batched_points = rescaled_batched_points[
:, :, : self.decoder_max_num_input_points, :
]
batched_point_labels = batched_point_labels[
:, :, : self.decoder_max_num_input_points
]
elif num_pts < self.decoder_max_num_input_points:
rescaled_batched_points = F.pad(
rescaled_batched_points,
(0, 0, 0, self.decoder_max_num_input_points - num_pts),
value=-1.0,
)
batched_point_labels = F.pad(
batched_point_labels,
(0, self.decoder_max_num_input_points - num_pts),
value=-1.0,
)
sparse_embeddings = self.prompt_encoder(
rescaled_batched_points.reshape(
batch_size * max_num_queries, self.decoder_max_num_input_points, 2
),
batched_point_labels.reshape(
batch_size * max_num_queries, self.decoder_max_num_input_points
),
)
sparse_embeddings = sparse_embeddings.view(
batch_size,
max_num_queries,
sparse_embeddings.shape[1],
sparse_embeddings.shape[2],
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings,
self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
multimask_output=multimask_output,
)
_, num_predictions, low_res_size, _ = low_res_masks.shape
if output_w > 0 and output_h > 0:
output_masks = F.interpolate(
low_res_masks, (output_h, output_w), mode="bicubic"
)
output_masks = torch.reshape(
output_masks,
(batch_size, max_num_queries, num_predictions, output_h, output_w),
)
else:
output_masks = torch.reshape(
low_res_masks,
(
batch_size,
max_num_queries,
num_predictions,
low_res_size,
low_res_size,
),
)
iou_predictions = torch.reshape(
iou_predictions, (batch_size, max_num_queries, num_predictions)
)
return output_masks, iou_predictions
def get_rescaled_pts(self, batched_points: torch.Tensor, input_h: int, input_w: int):
return torch.stack(
[
torch.where(
batched_points[..., 0] >= 0,
batched_points[..., 0] * self.image_encoder.img_size / input_w,
-1.0,
),
torch.where(
batched_points[..., 1] >= 0,
batched_points[..., 1] * self.image_encoder.img_size / input_h,
-1.0,
),
],
dim=-1,
)
@torch.jit.export
def get_image_embeddings(self, batched_images) -> torch.Tensor:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_images: A tensor of shape [B, 3, H, W]
Returns:
List of image embeddings each of of shape [B, C(i), H(i), W(i)].
The last embedding corresponds to the final layer.
"""
batched_images = self.preprocess(batched_images)
return self.image_encoder(batched_images)
def forward(
self,
batched_images: torch.Tensor,
batched_points: torch.Tensor,
batched_point_labels: torch.Tensor,
scale_to_original_image_size: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_images: A tensor of shape [B, 3, H, W]
batched_points: A tensor of shape [B, num_queries, max_num_pts, 2]
batched_point_labels: A tensor of shape [B, num_queries, max_num_pts]
Returns:
A list tuples of two tensors where the ith element is by considering the first i+1 points.
low_res_mask: A tensor of shape [B, 256, 256] of predicted masks
iou_predictions: A tensor of shape [B, max_num_queries] of estimated IOU scores
"""
batch_size, _, input_h, input_w = batched_images.shape
image_embeddings = self.get_image_embeddings(batched_images)
return self.predict_masks(
image_embeddings,
batched_points,
batched_point_labels,
multimask_output=True,
input_h=input_h,
input_w=input_w,
output_h=input_h if scale_to_original_image_size else -1,
output_w=input_w if scale_to_original_image_size else -1,
)
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
if (
x.shape[2] != self.image_encoder.img_size
or x.shape[3] != self.image_encoder.img_size
):
x = F.interpolate(
x,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
)
return (x - self.pixel_mean) / self.pixel_std
def build_efficient_sam(encoder_patch_embed_dim, encoder_num_heads, checkpoint=None):
img_size = 1024
encoder_patch_size = 16
encoder_depth = 12
encoder_mlp_ratio = 4.0
encoder_neck_dims = [256, 256]
decoder_max_num_input_points = 6
decoder_transformer_depth = 2
decoder_transformer_mlp_dim = 2048
decoder_num_heads = 8
decoder_upscaling_layer_dims = [64, 32]
num_multimask_outputs = 3
iou_head_depth = 3
iou_head_hidden_dim = 256
activation = "gelu"
normalization_type = "layer_norm"
normalize_before_activation = False
assert activation == "relu" or activation == "gelu"
if activation == "relu":
activation_fn = nn.ReLU
else:
activation_fn = nn.GELU
image_encoder = ImageEncoderViT(
img_size=img_size,
patch_size=encoder_patch_size,
in_chans=3,
patch_embed_dim=encoder_patch_embed_dim,
normalization_type=normalization_type,
depth=encoder_depth,
num_heads=encoder_num_heads,
mlp_ratio=encoder_mlp_ratio,
neck_dims=encoder_neck_dims,
act_layer=activation_fn,
)
image_embedding_size = image_encoder.image_embedding_size
encoder_transformer_output_dim = image_encoder.transformer_output_dim
sam = EfficientSam(
image_encoder=image_encoder,
prompt_encoder=PromptEncoder(
embed_dim=encoder_transformer_output_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(img_size, img_size),
),
decoder_max_num_input_points=decoder_max_num_input_points,
mask_decoder=MaskDecoder(
transformer_dim=encoder_transformer_output_dim,
transformer=TwoWayTransformer(
depth=decoder_transformer_depth,
embedding_dim=encoder_transformer_output_dim,
num_heads=decoder_num_heads,
mlp_dim=decoder_transformer_mlp_dim,
activation=activation_fn,
normalize_before_activation=normalize_before_activation,
),
num_multimask_outputs=num_multimask_outputs,
activation=activation_fn,
normalization_type=normalization_type,
normalize_before_activation=normalize_before_activation,
iou_head_depth=iou_head_depth - 1,
iou_head_hidden_dim=iou_head_hidden_dim,
upscaling_layer_dims=decoder_upscaling_layer_dims,
),
pixel_mean=[0.485, 0.456, 0.406],
pixel_std=[0.229, 0.224, 0.225],
)
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f, map_location="cpu")
sam.load_state_dict(state_dict["model"])
return sam
|