djstrong's picture
f
b91291d
raw
history blame
21.2 kB
import glob
import json
import math
import os
import re
from dataclasses import dataclass
import dateutil
import numpy as np
from src.about import all_tasks, g_tasks, mc_tasks, rag_tasks
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, NShotType
from src.submission.check_validity import is_model_on_hub
NUM_FEWSHOT = 0
@dataclass
class EvalResult:
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
lang: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
n_shot: NShotType = NShotType.n0
org_and_model: str = ""
start_date: float = 0
@classmethod
def init_from_json_file(self, json_filepath, n_shot_num):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
n_shot = data.get("n-shot")
start_date = data.get("date", 0)
chat_template = data.get("chat_template", None)
fewshot_as_multiturn = data.get("fewshot_as_multiturn", False)
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
orig_org_and_model = org_and_model
SPICHLERZ_ORG = "speakleash/"
if re.match(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", org_and_model):
org_and_model = re.sub(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", SPICHLERZ_ORG, org_and_model)
org_and_model = org_and_model.replace(",dtype=bfloat16", "")
org_and_model = org_and_model.replace(",dtype=float16", "")
org_and_model = org_and_model.replace("models/hf_v7_e1", "APT3-1B-Instruct-e1")
org_and_model = org_and_model.replace("models/hf_v7_e2", "APT3-1B-Instruct-e2")
org_and_model = re.sub(r"^pretrained=", "", org_and_model)
org_and_model = re.sub(r"^model=", "", org_and_model)
org_and_model = org_and_model.replace(",trust_remote_code=True", "")
org_and_model = org_and_model.replace(",parallelize=True", "")
org_and_model = org_and_model.replace(",tokenizer_backend=huggingface", "")
org_and_model = re.sub(",base_url=[^,]+", ",API", org_and_model)
org_and_model = re.sub(",prefix_token_id=\d+", "", org_and_model)
org_and_model = re.sub("/$", "", org_and_model)
model_mapping={
'speakleash/mistral_7B-v2/spkl-only-e1_333887a5':'speakleash/Bielik-7B-v0.1',
'speakleash/mistral_7B-v2/spkl-only_sft_v2/e1_base/spkl-only_v10wa_7e6-e2_bbc67e89':'speakleash/Bielik-7B-Instruct-v0.1',
'meta-llama/Meta-Llama-3.1-405B-Instruct-FP8,API': 'meta-llama/Meta-Llama-3.1-405B-Instruct-FP8,API'
}
#map org_and_model using model_mapping
if org_and_model in model_mapping:
org_and_model=model_mapping[org_and_model]
# if org_and_model=='speakleash/mistral_7B-v2/spkl-only-e1_333887a5':
# org_and_model='speakleash/Bielik-7B-v0.1'
# elif org_and_model=='speakleash/mistral_7B-v2/spkl-only_sft_v2/e1_base/spkl-only_v10wa_7e6-e2_bbc67e89':
# org_and_model='speakleash/Bielik-7B-Instruct-v0.1'
if chat_template:
org_and_model += ",chat"
if fewshot_as_multiturn:
org_and_model += ",multiturn"
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}" # _{precision.value.name}
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}" # _{precision.value.name}
# if chat_template:
# result_key = f"{result_key}_chat"
# model = f"{model},chat"
# org_and_model= f"{org_and_model[1]},chat"
full_model = "/".join(org_and_model)
still_on_hub, err, model_config = is_model_on_hub(
full_model.split(',')[0], config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
if err:
print(full_model, err)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
task_n_shot_num = n_shot_num
if 'perplexity' in task.metric or task.benchmark=='polish_eq_bench': # perplexity is the same for 0-shot and 5-shot and is calculated only with 0-shot
task_n_shot_num = 0
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if
task.benchmark == k and n_shot.get(k, -1) == task_n_shot_num])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
if 'perplexity' in task.metric or 'eqbench' in task.metric:
mean_acc = np.mean(accs)
else:
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = (mean_acc, start_date)
# results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
n_shot=NShotType.from_str(n_shot_num),
org_and_model=orig_org_and_model,
start_date=start_date
)
def update_with_metadata(self, metadata):
# print('UPDATE', self.full_model, self.model, self.eval_name)
try:
k = self.full_model.replace(',chat', '').replace(',multiturn', '')
meta = metadata[k]
self.model_type = ModelType.from_str(meta.get("type", "?"))
self.num_params = meta.get("params", 0)
self.license = meta.get("license", "?")
self.lang = meta.get("lang", "?")
# TODO desc name
except KeyError:
print(f"Could not find metadata for {self.full_model}")
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
return
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# g_tasks = [task.value.benchmark for task in Tasks if task.value.type == "generate_until"]
# mc_tasks = [task.value.benchmark for task in Tasks if task.value.type == "multiple_choice"]
# rag_tasks = ['polish_polqa_reranking_multiple_choice', 'polish_polqa_open_book', 'polish_poquad_open_book']
# all_tasks = g_tasks + mc_tasks
all_tasks_wo_polqa = [task for task in all_tasks if 'polqa' not in task]
baselines = {task.value.benchmark: task.value.baseline*100 for task in Tasks}
# average_old = sum([v for task, v in self.results.items() if v is not None and task in all_tasks_wo_polqa]) / len(all_tasks_wo_polqa)
average = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in all_tasks]) / len(all_tasks)
# average_g = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in g_tasks]) / len(g_tasks)
# average_mc = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in mc_tasks]) / len(mc_tasks)
# average_rag = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in rag_tasks]) / len(rag_tasks)
data_dict = {}
# data_dict = {
# "eval_name": self.eval_name, # not a column, just a save name,
# AutoEvalColumn.precision.name: self.precision.value.name,
# AutoEvalColumn.model_type.name: self.model_type.value.name,
# AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
# AutoEvalColumn.architecture.name: self.architecture,
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
# AutoEvalColumn.dummy.name: self.full_model,
# AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: average,
# AutoEvalColumn.license.name: self.license,
# AutoEvalColumn.likes.name: self.likes,
# AutoEvalColumn.params.name: self.num_params,
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
# }
try:
data_dict["eval_name"] = self.eval_name
except KeyError:
print(f"Could not find eval name")
try:
data_dict[AutoEvalColumn.precision.name] = self.precision.value.name
except KeyError:
print(f"Could not find precision")
except AttributeError:
print(f"AttributeError precision")
try:
data_dict[AutoEvalColumn.model_type.name] = self.model_type.value.name
except KeyError:
print(f"Could not find model type")
try:
data_dict[AutoEvalColumn.model_type_symbol.name] = self.model_type.value.symbol
except KeyError:
print(f"Could not find model type symbol")
except AttributeError:
print(f"AttributeError model_type")
try:
data_dict[AutoEvalColumn.weight_type.name] = self.weight_type.value.name
except KeyError:
print(f"Could not find weight type")
try:
data_dict[AutoEvalColumn.architecture.name] = self.architecture
except KeyError:
print(f"Could not find architecture")
except AttributeError:
print(f"AttributeError architecture")
try:
data_dict[AutoEvalColumn.model.name] = make_clickable_model(
self.full_model, self.model) if self.still_on_hub else self.model #TODO or full_model
except KeyError:
print(f"Could not find model")
try:
data_dict[AutoEvalColumn.dummy.name] = self.full_model
except KeyError:
print(f"Could not find dummy")
try:
data_dict[AutoEvalColumn.revision.name] = self.revision
except KeyError:
print(f"Could not find revision")
except AttributeError:
print(f"AttributeError revision")
# try:
# data_dict[AutoEvalColumn.average_old.name] = average_old
# except KeyError:
# print(f"Could not find average_old")
try:
data_dict[AutoEvalColumn.average.name] = average
except KeyError:
print(f"Could not find average")
# try:
# data_dict[AutoEvalColumn.average_g.name] = average_g
# except KeyError:
# print(f"Could not find average_g")
# try:
# data_dict[AutoEvalColumn.average_mc.name] = average_mc
# except KeyError:
# print(f"Could not find average_mc")
# try:
# data_dict[AutoEvalColumn.average_rag.name] = average_rag
# except KeyError:
# print(f"Could not find average_rag")
try:
data_dict[AutoEvalColumn.license.name] = self.license
except KeyError:
print(f"Could not find license")
except AttributeError:
print(f"AttributeError license")
try:
data_dict[AutoEvalColumn.lang.name] = self.lang
except KeyError:
print(f"Could not find lang")
except AttributeError:
print(f"AttributeError lang")
try:
data_dict[AutoEvalColumn.likes.name] = self.likes
except KeyError:
print(f"Could not find likes")
except AttributeError:
print(f"AttributeError likes")
try:
data_dict[AutoEvalColumn.params.name] = self.num_params
except KeyError:
print(f"Could not find params")
except AttributeError:
print(f"AttributeError params")
try:
data_dict[AutoEvalColumn.still_on_hub.name] = self.still_on_hub
except KeyError:
print(f"Could not find still on hub")
except AttributeError:
print(f"AttributeError stillonhub")
try:
data_dict[AutoEvalColumn.n_shot.name] = self.n_shot.value.name
except KeyError:
print(f"Could not find still on hub")
for task in Tasks:
try:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
except KeyError:
print(f"Could not find {task.value.col_name}")
data_dict[task.value.col_name] = None
data_dict[AutoEvalColumn.rank.name] = 0
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, metadata) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
if '_polish_pes_' not in root: continue
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
# print('PATHS:', model_result_filepaths)
eval_results = {}
for n_shot in [0, 5]:
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath, n_shot_num=n_shot)
eval_result.update_with_request_file(requests_path)
# update with metadata
eval_result.update_with_metadata(metadata)
# Store results of same eval together
eval_name = f"{eval_result.eval_name}_{n_shot}-shot"
if eval_name in eval_results.keys():
for k, (v, start_date) in eval_result.results.items():
if v is not None:
if k in eval_results[eval_name].results:
if start_date > eval_results[eval_name].results[k][1]:
print(
f"Overwriting {eval_name}.results {k} {eval_results[eval_name].results[k]} with {v}: {model_result_filepath} {n_shot} {eval_result.start_date} {eval_results[eval_name].start_date}")
eval_results[eval_name].results[k] = (v, start_date)
else:
print(
f"Skipping {eval_name} {eval_result.start_date} {eval_results[eval_name].start_date}: {model_result_filepath} {n_shot}")
else:
eval_results[eval_name].results[k] = (v, start_date)
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
# TODO: log updated
else:
eval_results[eval_name] = eval_result
for k,v in eval_results.items():
v.results = {k: v for k, (v, start_date) in v.results.items()}
all_models = []
missing_results_for_task = {}
missing_metadata = []
for_run=[]
for v in eval_results.values():
r = v.to_dict()
in_progress=False
for task in Tasks:
if r[task.value.col_name] is None:
task_name = f"{r['n_shot']}|{task.value.benchmark}"
if task_name in missing_results_for_task:
missing_results_for_task[task_name].append(f"{v.full_model}|{v.org_and_model}")
if v.still_on_hub and task.value.benchmark in all_tasks:
for_run.append([r["n_shot"], task.value.benchmark, v.full_model])
in_progress=True
# print(f'sbatch start.sh "bash eval_model_task_bs1.sh {r["n_shot"]} {task.value.benchmark} {v.full_model}"')
else:
missing_results_for_task[task_name] = [f"{v.full_model}|{v.org_and_model}"]
if v.still_on_hub and task.value.benchmark in all_tasks:
for_run.append([r["n_shot"], task.value.benchmark, v.full_model])
in_progress=True
# print(f'sbatch start.sh "bash eval_model_task_bs1.sh {r["n_shot"]} {task.value.benchmark} {v.full_model}"')
if in_progress:
v.model = '🚧' + v.model
if r[AutoEvalColumn.lang.name] is None or r[AutoEvalColumn.lang.name] == "?":
missing_metadata.append(f"{v.full_model}")
all_models.append((v.full_model, v.num_params, v.still_on_hub))
results = []
for v in eval_results.values():
try:
print(v)
v.to_dict() # we test if the dict version is complete
# if v.results:
results.append(v)
except KeyError: # not all eval values present
print(f"not all eval values present {v.eval_name} {v.full_model}")
continue
print(f"Missing sbatch results:")
for r in for_run:
if r[0]==5 and r[1] in ['polish_eq_bench']: continue
fm=r[2]
script='eval_model_task_bs1.sh'
if ',chat' in fm:
script='eval_model_task_bs1_chat.sh'
fm=fm.replace(',chat','')
if ',multiturn' in fm:
script='eval_model_task_bs1_chat_few.sh'
fm=fm.replace(',multiturn','')
print(f'sbatch start.sh "bash {script} {r[0]} {r[1]} {fm}"')
# print('missing_results_for_task', missing_results_for_task)
for task, models in missing_results_for_task.items():
print(f"Missing results for {task} for {len(models)} models")
# print(" ".join(models))
for model in models:
print(f'"{model}"')
print()
print(f"Missing metadata for {len(missing_metadata)} models")
for model in missing_metadata:
print(model)
print()
print(f"All models:")
for model in all_models:
print(model)
print()
return results