Spaces:
Runtime error
Runtime error
File size: 21,197 Bytes
df66f6e 2a5f9fb df66f6e b15949c 2a5f9fb c7cf816 2a5f9fb d2d2329 2a5f9fb d6e3be2 2a5f9fb b521fe9 2a5f9fb b521fe9 2a5f9fb b521fe9 2a5f9fb 9d22eee b521fe9 2a5f9fb 918265b 2a5f9fb d488d58 b521fe9 2a5f9fb d2d2329 0d2a785 b521fe9 2a5f9fb 1f30b67 3dfaf22 2a5f9fb 943f952 a8630b1 b521fe9 a639a0d e22058f 2a5f9fb 9d22eee 2a5f9fb 0d2a785 1be4fc9 2a37ba0 b521fe9 ea6148c 2a37ba0 ab0f36d 92530b5 bc4548b b7ba21a 45fa708 b521fe9 92530b5 ab0f36d 6869211 06e07f3 aa391c7 06e07f3 2a5f9fb 3365bd4 2a5f9fb 3365bd4 2a5f9fb 06e07f3 a639a0d ee50884 e03efff 002172c ee50884 3dfaf22 2a5f9fb 91765f5 2be0a05 91765f5 943f952 b521fe9 91765f5 2a5f9fb 6a07d0b 0d2a785 b521fe9 2a5f9fb 002172c 2a5f9fb b521fe9 2a5f9fb 3bb301b 0d2a785 b521fe9 2a5f9fb ed33da8 b521fe9 ed33da8 aa391c7 b858bc5 ed33da8 d488d58 ed33da8 918265b b521fe9 ed33da8 3dfaf22 ed33da8 9d22eee 2a5f9fb 9d22eee 2a5f9fb b1a1395 2a5f9fb 1ffc326 2a5f9fb 3dfaf22 c7cf816 96fbe7c ed33da8 b521fe9 ed33da8 a8b01d2 1bea7de a8b01d2 b521fe9 845f28e 45d02c6 845f28e 45d02c6 845f28e 45d02c6 845f28e b521fe9 acb5f2e 845f28e 45d02c6 845f28e 23c87c8 96fbe7c 845f28e 23c87c8 ed33da8 23c87c8 ed33da8 23c87c8 ad6c108 845f28e 45d02c6 845f28e 918265b 845f28e 45d02c6 845f28e 45d02c6 845f28e 45d02c6 845f28e 3bb301b d2d2329 3bb301b 2a5f9fb 0d4d8e0 83a3b43 2a5f9fb acb5f2e 2a5f9fb 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb b521fe9 2a5f9fb ed33da8 3dfaf22 2a5f9fb b91291d 2a5f9fb e333ea5 2a5f9fb b521fe9 2a5f9fb b521fe9 1f30b67 b521fe9 ed33da8 1f30b67 b521fe9 1f30b67 2a5f9fb b521fe9 44ddd16 2a5f9fb c4f06f0 0d2a785 45fa708 6b50f19 0d2a785 8445932 0d2a785 6b50f19 28627fa 8445932 28627fa 0d2a785 6b50f19 28627fa 8445932 28627fa 8445932 5f72455 8445932 b521fe9 45fa708 c8cdc21 0d2a785 44ddd16 28627fa 6deb2a6 45551c3 6deb2a6 28627fa 6deb2a6 28627fa 45551c3 6deb2a6 45551c3 28627fa 0d2a785 b5aa7e1 0d2a785 45fa708 c4f06f0 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import glob
import json
import math
import os
import re
from dataclasses import dataclass
import dateutil
import numpy as np
from src.about import all_tasks, g_tasks, mc_tasks, rag_tasks
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, NShotType
from src.submission.check_validity import is_model_on_hub
NUM_FEWSHOT = 0
@dataclass
class EvalResult:
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
lang: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
n_shot: NShotType = NShotType.n0
org_and_model: str = ""
start_date: float = 0
@classmethod
def init_from_json_file(self, json_filepath, n_shot_num):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
n_shot = data.get("n-shot")
start_date = data.get("date", 0)
chat_template = data.get("chat_template", None)
fewshot_as_multiturn = data.get("fewshot_as_multiturn", False)
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
orig_org_and_model = org_and_model
SPICHLERZ_ORG = "speakleash/"
if re.match(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", org_and_model):
org_and_model = re.sub(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", SPICHLERZ_ORG, org_and_model)
org_and_model = org_and_model.replace(",dtype=bfloat16", "")
org_and_model = org_and_model.replace(",dtype=float16", "")
org_and_model = org_and_model.replace("models/hf_v7_e1", "APT3-1B-Instruct-e1")
org_and_model = org_and_model.replace("models/hf_v7_e2", "APT3-1B-Instruct-e2")
org_and_model = re.sub(r"^pretrained=", "", org_and_model)
org_and_model = re.sub(r"^model=", "", org_and_model)
org_and_model = org_and_model.replace(",trust_remote_code=True", "")
org_and_model = org_and_model.replace(",parallelize=True", "")
org_and_model = org_and_model.replace(",tokenizer_backend=huggingface", "")
org_and_model = re.sub(",base_url=[^,]+", ",API", org_and_model)
org_and_model = re.sub(",prefix_token_id=\d+", "", org_and_model)
org_and_model = re.sub("/$", "", org_and_model)
model_mapping={
'speakleash/mistral_7B-v2/spkl-only-e1_333887a5':'speakleash/Bielik-7B-v0.1',
'speakleash/mistral_7B-v2/spkl-only_sft_v2/e1_base/spkl-only_v10wa_7e6-e2_bbc67e89':'speakleash/Bielik-7B-Instruct-v0.1',
'meta-llama/Meta-Llama-3.1-405B-Instruct-FP8,API': 'meta-llama/Meta-Llama-3.1-405B-Instruct-FP8,API'
}
#map org_and_model using model_mapping
if org_and_model in model_mapping:
org_and_model=model_mapping[org_and_model]
# if org_and_model=='speakleash/mistral_7B-v2/spkl-only-e1_333887a5':
# org_and_model='speakleash/Bielik-7B-v0.1'
# elif org_and_model=='speakleash/mistral_7B-v2/spkl-only_sft_v2/e1_base/spkl-only_v10wa_7e6-e2_bbc67e89':
# org_and_model='speakleash/Bielik-7B-Instruct-v0.1'
if chat_template:
org_and_model += ",chat"
if fewshot_as_multiturn:
org_and_model += ",multiturn"
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}" # _{precision.value.name}
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}" # _{precision.value.name}
# if chat_template:
# result_key = f"{result_key}_chat"
# model = f"{model},chat"
# org_and_model= f"{org_and_model[1]},chat"
full_model = "/".join(org_and_model)
still_on_hub, err, model_config = is_model_on_hub(
full_model.split(',')[0], config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
if err:
print(full_model, err)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
task_n_shot_num = n_shot_num
if 'perplexity' in task.metric or task.benchmark=='polish_eq_bench': # perplexity is the same for 0-shot and 5-shot and is calculated only with 0-shot
task_n_shot_num = 0
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if
task.benchmark == k and n_shot.get(k, -1) == task_n_shot_num])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
if 'perplexity' in task.metric or 'eqbench' in task.metric:
mean_acc = np.mean(accs)
else:
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = (mean_acc, start_date)
# results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
n_shot=NShotType.from_str(n_shot_num),
org_and_model=orig_org_and_model,
start_date=start_date
)
def update_with_metadata(self, metadata):
# print('UPDATE', self.full_model, self.model, self.eval_name)
try:
k = self.full_model.replace(',chat', '').replace(',multiturn', '')
meta = metadata[k]
self.model_type = ModelType.from_str(meta.get("type", "?"))
self.num_params = meta.get("params", 0)
self.license = meta.get("license", "?")
self.lang = meta.get("lang", "?")
# TODO desc name
except KeyError:
print(f"Could not find metadata for {self.full_model}")
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
return
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# g_tasks = [task.value.benchmark for task in Tasks if task.value.type == "generate_until"]
# mc_tasks = [task.value.benchmark for task in Tasks if task.value.type == "multiple_choice"]
# rag_tasks = ['polish_polqa_reranking_multiple_choice', 'polish_polqa_open_book', 'polish_poquad_open_book']
# all_tasks = g_tasks + mc_tasks
all_tasks_wo_polqa = [task for task in all_tasks if 'polqa' not in task]
baselines = {task.value.benchmark: task.value.baseline*100 for task in Tasks}
# average_old = sum([v for task, v in self.results.items() if v is not None and task in all_tasks_wo_polqa]) / len(all_tasks_wo_polqa)
average = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in all_tasks]) / len(all_tasks)
# average_g = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in g_tasks]) / len(g_tasks)
# average_mc = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in mc_tasks]) / len(mc_tasks)
# average_rag = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in rag_tasks]) / len(rag_tasks)
data_dict = {}
# data_dict = {
# "eval_name": self.eval_name, # not a column, just a save name,
# AutoEvalColumn.precision.name: self.precision.value.name,
# AutoEvalColumn.model_type.name: self.model_type.value.name,
# AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
# AutoEvalColumn.architecture.name: self.architecture,
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
# AutoEvalColumn.dummy.name: self.full_model,
# AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: average,
# AutoEvalColumn.license.name: self.license,
# AutoEvalColumn.likes.name: self.likes,
# AutoEvalColumn.params.name: self.num_params,
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
# }
try:
data_dict["eval_name"] = self.eval_name
except KeyError:
print(f"Could not find eval name")
try:
data_dict[AutoEvalColumn.precision.name] = self.precision.value.name
except KeyError:
print(f"Could not find precision")
except AttributeError:
print(f"AttributeError precision")
try:
data_dict[AutoEvalColumn.model_type.name] = self.model_type.value.name
except KeyError:
print(f"Could not find model type")
try:
data_dict[AutoEvalColumn.model_type_symbol.name] = self.model_type.value.symbol
except KeyError:
print(f"Could not find model type symbol")
except AttributeError:
print(f"AttributeError model_type")
try:
data_dict[AutoEvalColumn.weight_type.name] = self.weight_type.value.name
except KeyError:
print(f"Could not find weight type")
try:
data_dict[AutoEvalColumn.architecture.name] = self.architecture
except KeyError:
print(f"Could not find architecture")
except AttributeError:
print(f"AttributeError architecture")
try:
data_dict[AutoEvalColumn.model.name] = make_clickable_model(
self.full_model, self.model) if self.still_on_hub else self.model #TODO or full_model
except KeyError:
print(f"Could not find model")
try:
data_dict[AutoEvalColumn.dummy.name] = self.full_model
except KeyError:
print(f"Could not find dummy")
try:
data_dict[AutoEvalColumn.revision.name] = self.revision
except KeyError:
print(f"Could not find revision")
except AttributeError:
print(f"AttributeError revision")
# try:
# data_dict[AutoEvalColumn.average_old.name] = average_old
# except KeyError:
# print(f"Could not find average_old")
try:
data_dict[AutoEvalColumn.average.name] = average
except KeyError:
print(f"Could not find average")
# try:
# data_dict[AutoEvalColumn.average_g.name] = average_g
# except KeyError:
# print(f"Could not find average_g")
# try:
# data_dict[AutoEvalColumn.average_mc.name] = average_mc
# except KeyError:
# print(f"Could not find average_mc")
# try:
# data_dict[AutoEvalColumn.average_rag.name] = average_rag
# except KeyError:
# print(f"Could not find average_rag")
try:
data_dict[AutoEvalColumn.license.name] = self.license
except KeyError:
print(f"Could not find license")
except AttributeError:
print(f"AttributeError license")
try:
data_dict[AutoEvalColumn.lang.name] = self.lang
except KeyError:
print(f"Could not find lang")
except AttributeError:
print(f"AttributeError lang")
try:
data_dict[AutoEvalColumn.likes.name] = self.likes
except KeyError:
print(f"Could not find likes")
except AttributeError:
print(f"AttributeError likes")
try:
data_dict[AutoEvalColumn.params.name] = self.num_params
except KeyError:
print(f"Could not find params")
except AttributeError:
print(f"AttributeError params")
try:
data_dict[AutoEvalColumn.still_on_hub.name] = self.still_on_hub
except KeyError:
print(f"Could not find still on hub")
except AttributeError:
print(f"AttributeError stillonhub")
try:
data_dict[AutoEvalColumn.n_shot.name] = self.n_shot.value.name
except KeyError:
print(f"Could not find still on hub")
for task in Tasks:
try:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
except KeyError:
print(f"Could not find {task.value.col_name}")
data_dict[task.value.col_name] = None
data_dict[AutoEvalColumn.rank.name] = 0
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, metadata) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
if '_polish_pes_' not in root: continue
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
# print('PATHS:', model_result_filepaths)
eval_results = {}
for n_shot in [0, 5]:
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath, n_shot_num=n_shot)
eval_result.update_with_request_file(requests_path)
# update with metadata
eval_result.update_with_metadata(metadata)
# Store results of same eval together
eval_name = f"{eval_result.eval_name}_{n_shot}-shot"
if eval_name in eval_results.keys():
for k, (v, start_date) in eval_result.results.items():
if v is not None:
if k in eval_results[eval_name].results:
if start_date > eval_results[eval_name].results[k][1]:
print(
f"Overwriting {eval_name}.results {k} {eval_results[eval_name].results[k]} with {v}: {model_result_filepath} {n_shot} {eval_result.start_date} {eval_results[eval_name].start_date}")
eval_results[eval_name].results[k] = (v, start_date)
else:
print(
f"Skipping {eval_name} {eval_result.start_date} {eval_results[eval_name].start_date}: {model_result_filepath} {n_shot}")
else:
eval_results[eval_name].results[k] = (v, start_date)
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
# TODO: log updated
else:
eval_results[eval_name] = eval_result
for k,v in eval_results.items():
v.results = {k: v for k, (v, start_date) in v.results.items()}
all_models = []
missing_results_for_task = {}
missing_metadata = []
for_run=[]
for v in eval_results.values():
r = v.to_dict()
in_progress=False
for task in Tasks:
if r[task.value.col_name] is None:
task_name = f"{r['n_shot']}|{task.value.benchmark}"
if task_name in missing_results_for_task:
missing_results_for_task[task_name].append(f"{v.full_model}|{v.org_and_model}")
if v.still_on_hub and task.value.benchmark in all_tasks:
for_run.append([r["n_shot"], task.value.benchmark, v.full_model])
in_progress=True
# print(f'sbatch start.sh "bash eval_model_task_bs1.sh {r["n_shot"]} {task.value.benchmark} {v.full_model}"')
else:
missing_results_for_task[task_name] = [f"{v.full_model}|{v.org_and_model}"]
if v.still_on_hub and task.value.benchmark in all_tasks:
for_run.append([r["n_shot"], task.value.benchmark, v.full_model])
in_progress=True
# print(f'sbatch start.sh "bash eval_model_task_bs1.sh {r["n_shot"]} {task.value.benchmark} {v.full_model}"')
if in_progress:
v.model = '🚧' + v.model
if r[AutoEvalColumn.lang.name] is None or r[AutoEvalColumn.lang.name] == "?":
missing_metadata.append(f"{v.full_model}")
all_models.append((v.full_model, v.num_params, v.still_on_hub))
results = []
for v in eval_results.values():
try:
print(v)
v.to_dict() # we test if the dict version is complete
# if v.results:
results.append(v)
except KeyError: # not all eval values present
print(f"not all eval values present {v.eval_name} {v.full_model}")
continue
print(f"Missing sbatch results:")
for r in for_run:
if r[0]==5 and r[1] in ['polish_eq_bench']: continue
fm=r[2]
script='eval_model_task_bs1.sh'
if ',chat' in fm:
script='eval_model_task_bs1_chat.sh'
fm=fm.replace(',chat','')
if ',multiturn' in fm:
script='eval_model_task_bs1_chat_few.sh'
fm=fm.replace(',multiturn','')
print(f'sbatch start.sh "bash {script} {r[0]} {r[1]} {fm}"')
# print('missing_results_for_task', missing_results_for_task)
for task, models in missing_results_for_task.items():
print(f"Missing results for {task} for {len(models)} models")
# print(" ".join(models))
for model in models:
print(f'"{model}"')
print()
print(f"Missing metadata for {len(missing_metadata)} models")
for model in missing_metadata:
print(model)
print()
print(f"All models:")
for model in all_models:
print(model)
print()
return results
|