ollama
#32
by
zhiminy
- opened
- requirements.txt +2 -1
- src/backend/ollama +55 -0
- src/display/utils.py +3 -0
requirements.txt
CHANGED
@@ -31,4 +31,5 @@ spacy==3.7.4
|
|
31 |
selfcheckgpt
|
32 |
immutabledict
|
33 |
gputil
|
34 |
-
bitsandbytes
|
|
|
|
31 |
selfcheckgpt
|
32 |
immutabledict
|
33 |
gputil
|
34 |
+
bitsandbytes
|
35 |
+
ollama
|
src/backend/ollama
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
import torch
|
3 |
+
import ollama
|
4 |
+
|
5 |
+
from lm_eval.api.registry import register_model
|
6 |
+
|
7 |
+
from src.backend.hflm_with_measurement import HFLMWithMeasurement
|
8 |
+
|
9 |
+
@register_model("ollama")
|
10 |
+
class OllamaChatTemplate(HFLMWithMeasurement):
|
11 |
+
def __init__(self, use_chat_template=True, **kwargs):
|
12 |
+
super().__init__(**kwargs)
|
13 |
+
self.use_chat_template = use_chat_template
|
14 |
+
# Initialize the ollama model and tokenizer here
|
15 |
+
self.model = ollama.OllamaModel.from_pretrained(kwargs['model_name_or_path'])
|
16 |
+
self.tokenizer = ollama.OllamaTokenizer.from_pretrained(kwargs['model_name_or_path'])
|
17 |
+
|
18 |
+
def tok_batch_encode(
|
19 |
+
self,
|
20 |
+
strings: List[str],
|
21 |
+
padding_side: str = "left",
|
22 |
+
left_truncate_len: int = None,
|
23 |
+
truncation: bool = False,
|
24 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
25 |
+
|
26 |
+
if self.use_chat_template:
|
27 |
+
try:
|
28 |
+
updated_strings = []
|
29 |
+
for input_string in strings:
|
30 |
+
messages = [
|
31 |
+
{"role": "user", "content": f"{input_string}"},
|
32 |
+
]
|
33 |
+
updated_string = self.tokenizer.apply_chat_template(messages, tokenize=False)
|
34 |
+
updated_strings.append(updated_string)
|
35 |
+
strings = updated_strings[:]
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Failed to update input string with chat template: {e}")
|
38 |
+
|
39 |
+
# Encode a batch of strings. Converts to tensors and pads automatically.
|
40 |
+
old_padding_side = self.tokenizer.padding_side
|
41 |
+
self.tokenizer.padding_side = padding_side
|
42 |
+
|
43 |
+
encoding = self.tokenizer(
|
44 |
+
strings,
|
45 |
+
truncation=truncation,
|
46 |
+
padding="longest",
|
47 |
+
return_tensors="pt",
|
48 |
+
add_special_tokens=True,
|
49 |
+
)
|
50 |
+
if left_truncate_len:
|
51 |
+
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
|
52 |
+
encoding["attention_mask"] = encoding["attention_mask"][:, -left_truncate_len:]
|
53 |
+
self.tokenizer.padding_side = old_padding_side
|
54 |
+
|
55 |
+
return encoding["input_ids"], encoding["attention_mask"]
|
src/display/utils.py
CHANGED
@@ -187,6 +187,7 @@ class InferenceFramework(Enum):
|
|
187 |
# "moe-infinity", hf-chat
|
188 |
MoE_Infinity = ModelDetails("moe-infinity")
|
189 |
HF_Chat = ModelDetails("hf-chat")
|
|
|
190 |
Unknown = ModelDetails("?")
|
191 |
|
192 |
def to_str(self):
|
@@ -198,6 +199,8 @@ class InferenceFramework(Enum):
|
|
198 |
return InferenceFramework.MoE_Infinity
|
199 |
if inference_framework in ["hf-chat"]:
|
200 |
return InferenceFramework.HF_Chat
|
|
|
|
|
201 |
return InferenceFramework.Unknown
|
202 |
|
203 |
class GPUType(Enum):
|
|
|
187 |
# "moe-infinity", hf-chat
|
188 |
MoE_Infinity = ModelDetails("moe-infinity")
|
189 |
HF_Chat = ModelDetails("hf-chat")
|
190 |
+
Ollama = ModelDetails("ollama")
|
191 |
Unknown = ModelDetails("?")
|
192 |
|
193 |
def to_str(self):
|
|
|
199 |
return InferenceFramework.MoE_Infinity
|
200 |
if inference_framework in ["hf-chat"]:
|
201 |
return InferenceFramework.HF_Chat
|
202 |
+
if inference_framework in ["ollama"]:
|
203 |
+
return InferenceFramework.Ollama
|
204 |
return InferenceFramework.Unknown
|
205 |
|
206 |
class GPUType(Enum):
|