Spaces:
Sleeping
Sleeping
import logging | |
import gradio as gr | |
# import torch | |
from transformers import ( | |
AutoModelForSpeechSeq2Seq, | |
AutoProcessor, | |
pipeline, | |
WhisperProcessor, | |
) | |
device = "cpu" | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
# model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
# model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
# ) | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = WhisperProcessor.from_pretrained("openai/whisper-base.en") | |
# processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
# max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=8, | |
# return_timestamps=True, | |
# torch_dtype=torch_dtype, | |
device=device, | |
) | |
def transcribe_audio(audio): | |
result = pipe(audio) | |
logging.info(f'TRANSCRIPTION {result["text"]}') | |
return result | |
input_audio = gr.Audio( | |
source="microphone", | |
type="filepath", | |
optional=True, | |
waveform_options=gr.WaveformOptions( | |
waveform_color="#01C6FF", | |
waveform_progress_color="#0066B4", | |
skip_length=2, | |
show_controls=False, | |
), | |
) | |
demo = gr.Interface(fn=transcribe_audio, inputs=input_audio, outputs="text") | |
if __name__ == "__main__": | |
demo.launch() | |