import logging import gradio as gr # import torch from transformers import ( AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, WhisperProcessor, ) device = "cpu" # device = "cuda:0" if torch.cuda.is_available() else "cpu" # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" # model = AutoModelForSpeechSeq2Seq.from_pretrained( # model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True # ) model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = WhisperProcessor.from_pretrained("openai/whisper-base.en") # processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( task="automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, # max_new_tokens=128, chunk_length_s=30, batch_size=8, # return_timestamps=True, # torch_dtype=torch_dtype, device=device, ) def transcribe_audio(audio): result = pipe(audio) logging.info(f'TRANSCRIPTION {result["text"]}') return result input_audio = gr.Audio( source="microphone", type="filepath", optional=True, waveform_options=gr.WaveformOptions( waveform_color="#01C6FF", waveform_progress_color="#0066B4", skip_length=2, show_controls=False, ), ) demo = gr.Interface(fn=transcribe_audio, inputs=input_audio, outputs="text") if __name__ == "__main__": demo.launch()