Spaces:
Running
Running
import argparse | |
import os | |
import os.path as osp | |
import random | |
import uuid | |
import mmcv | |
import numpy as np | |
import torch | |
from mmcv import Config, DictAction | |
from mmcv.cnn import fuse_conv_bn | |
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
from mmcv.runner import get_dist_info, init_dist, load_checkpoint | |
from models import * # noqa | |
from models.datasets import build_dataset | |
from mmpose.apis import multi_gpu_test, single_gpu_test | |
from mmpose.core import wrap_fp16_model | |
from mmpose.datasets import build_dataloader | |
from mmpose.models import build_posenet | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='mmpose test model') | |
parser.add_argument('config', default=None, help='test config file path') | |
parser.add_argument('checkpoint', default=None, help='checkpoint file') | |
parser.add_argument('--out', help='output result file') | |
parser.add_argument( | |
'--fuse-conv-bn', | |
action='store_true', | |
help='Whether to fuse conv and bn, this will slightly increase the inference speed') | |
parser.add_argument( | |
'--eval', | |
default=None, | |
nargs='+', | |
help='evaluation metric, which depends on the dataset,' | |
' e.g., "mAP" for MSCOCO') | |
parser.add_argument( | |
'--permute_keypoints', | |
action='store_true', | |
help='whether to randomly permute keypoints') | |
parser.add_argument( | |
'--gpu_collect', | |
action='store_true', | |
help='whether to use gpu to collect results') | |
parser.add_argument('--tmpdir', help='tmp dir for writing some results') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
default={}, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. For example, ' | |
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='job launcher') | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def merge_configs(cfg1, cfg2): | |
# Merge cfg2 into cfg1 | |
# Overwrite cfg1 if repeated, ignore if value is None. | |
cfg1 = {} if cfg1 is None else cfg1.copy() | |
cfg2 = {} if cfg2 is None else cfg2 | |
for k, v in cfg2.items(): | |
if v: | |
cfg1[k] = v | |
return cfg1 | |
def main(): | |
random.seed(0) | |
np.random.seed(0) | |
torch.manual_seed(0) | |
uuid.UUID(int=0) | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
# cfg.model.pretrained = None | |
cfg.data.test.test_mode = True | |
args.work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) | |
# init distributed env first, since logger depends on the dist info. | |
if args.launcher == 'none': | |
distributed = False | |
else: | |
distributed = True | |
init_dist(args.launcher, **cfg.dist_params) | |
# build the dataloader | |
dataset = build_dataset(cfg.data.test, dict(test_mode=True)) | |
dataloader_setting = dict( | |
samples_per_gpu=1, | |
workers_per_gpu=cfg.data.get('workers_per_gpu', 12), | |
dist=distributed, | |
shuffle=False, | |
drop_last=False) | |
dataloader_setting = dict(dataloader_setting, | |
**cfg.data.get('test_dataloader', {})) | |
data_loader = build_dataloader(dataset, **dataloader_setting) | |
# build the model and load checkpoint | |
model = build_posenet(cfg.model) | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
wrap_fp16_model(model) | |
load_checkpoint(model, args.checkpoint, map_location='cpu') | |
if args.fuse_conv_bn: | |
model = fuse_conv_bn(model) | |
if not distributed: | |
model = MMDataParallel(model, device_ids=[0]) | |
outputs = single_gpu_test(model, data_loader) | |
else: | |
model = MMDistributedDataParallel( | |
model.cuda(), | |
device_ids=[torch.cuda.current_device()], | |
broadcast_buffers=False) | |
outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) | |
rank, _ = get_dist_info() | |
eval_config = cfg.get('evaluation', {}) | |
eval_config = merge_configs(eval_config, dict(metric=args.eval)) | |
if rank == 0: | |
if args.out: | |
print(f'\nwriting results to {args.out}') | |
mmcv.dump(outputs, args.out) | |
results = dataset.evaluate(outputs, **eval_config) | |
print('\n') | |
for k, v in sorted(results.items()): | |
print(f'{k}: {v}') | |
# save testing log | |
test_log = "./work_dirs/testing_log.txt" | |
with open(test_log, 'a') as f: | |
f.write("** config_file: " + args.config + "\t checkpoint: " + args.checkpoint + "\t \n") | |
for k, v in sorted(results.items()): | |
f.write(f'\t {k}: {v}'+'\n') | |
f.write("********************************************************************\n") | |
if __name__ == '__main__': | |
main() | |