File size: 5,456 Bytes
241adf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import os
import os.path as osp
import random
import uuid

import mmcv
import numpy as np
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from models import *  # noqa
from models.datasets import build_dataset

from mmpose.apis import multi_gpu_test, single_gpu_test
from mmpose.core import wrap_fp16_model
from mmpose.datasets import build_dataloader
from mmpose.models import build_posenet


def parse_args():
    parser = argparse.ArgumentParser(description='mmpose test model')
    parser.add_argument('config', default=None, help='test config file path')
    parser.add_argument('checkpoint', default=None, help='checkpoint file')
    parser.add_argument('--out', help='output result file')
    parser.add_argument(
        '--fuse-conv-bn',
        action='store_true',
        help='Whether to fuse conv and bn, this will slightly increase the inference speed')
    parser.add_argument(
        '--eval',
        default=None,
        nargs='+',
        help='evaluation metric, which depends on the dataset,'
        ' e.g., "mAP" for MSCOCO')
    parser.add_argument(
        '--permute_keypoints',
        action='store_true',
        help='whether to randomly permute keypoints')
    parser.add_argument(
        '--gpu_collect',
        action='store_true',
        help='whether to use gpu to collect results')
    parser.add_argument('--tmpdir', help='tmp dir for writing some results')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        default={},
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. For example, '
        "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def merge_configs(cfg1, cfg2):
    # Merge cfg2 into cfg1
    # Overwrite cfg1 if repeated, ignore if value is None.
    cfg1 = {} if cfg1 is None else cfg1.copy()
    cfg2 = {} if cfg2 is None else cfg2
    for k, v in cfg2.items():
        if v:
            cfg1[k] = v
    return cfg1


def main():
    random.seed(0)
    np.random.seed(0)
    torch.manual_seed(0)
    uuid.UUID(int=0)

    args = parse_args()

    cfg = Config.fromfile(args.config)

    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    args.work_dir = osp.join('./work_dirs',
                             osp.splitext(osp.basename(args.config))[0])
    mmcv.mkdir_or_exist(osp.abspath(args.work_dir))

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    dataloader_setting = dict(
        samples_per_gpu=1,
        workers_per_gpu=cfg.data.get('workers_per_gpu', 12),
        dist=distributed,
        shuffle=False,
        drop_last=False)
    dataloader_setting = dict(dataloader_setting,
                              **cfg.data.get('test_dataloader', {}))
    data_loader = build_dataloader(dataset, **dataloader_setting)

    # build the model and load checkpoint
    model = build_posenet(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect)

    rank, _ = get_dist_info()
    eval_config = cfg.get('evaluation', {})
    eval_config = merge_configs(eval_config, dict(metric=args.eval))

    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)

        results = dataset.evaluate(outputs, **eval_config)
        print('\n')
        for k, v in sorted(results.items()):
            print(f'{k}: {v}')

        # save testing log
        test_log = "./work_dirs/testing_log.txt"
        with open(test_log, 'a') as f:
            f.write("**  config_file: " + args.config + "\t checkpoint: " + args.checkpoint + "\t \n")
            for k, v in sorted(results.items()):
                f.write(f'\t {k}: {v}'+'\n')
            f.write("********************************************************************\n")
        
if __name__ == '__main__':
    main()