Spaces:
Runtime error
Runtime error
File size: 12,238 Bytes
4c022fe 2031452 4c022fe 2031452 4c022fe 2031452 4c022fe 2031452 4c022fe 2031452 4c022fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import torch
import collections
import torch.nn as nn
from functools import partial
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, PNDMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
from models.unet_2d_condition import UNet2DConditionModel
# suppress partial model loading warning
logging.set_verbosity_error()
class RegionDiffusion(nn.Module):
def __init__(self, device):
super().__init__()
self.device = device
self.num_train_timesteps = 1000
self.clip_gradient = False
print(f'[INFO] loading stable diffusion...')
model_id = 'runwayml/stable-diffusion-v1-5'
# 1. Load the autoencoder model which will be used to decode the latents into image space.
self.vae = AutoencoderKL.from_pretrained(
model_id, subfolder="vae").to(self.device)
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
self.tokenizer = CLIPTokenizer.from_pretrained(
model_id, subfolder='tokenizer')
self.text_encoder = CLIPTextModel.from_pretrained(
model_id, subfolder='text_encoder').to(self.device)
# 3. The UNet model for generating the latents.
self.unet = UNet2DConditionModel.from_pretrained(
model_id, subfolder="unet").to(self.device)
self.scheduler = PNDMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
num_train_timesteps=self.num_train_timesteps, skip_prk_steps=True, steps_offset=1)
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
self.masks = []
self.attention_maps = None
self.color_loss = torch.nn.functional.mse_loss
print(f'[INFO] loaded stable diffusion!')
def get_text_embeds(self, prompt, negative_prompt):
# prompt, negative_prompt: [str]
# Tokenize text and get embeddings
text_input = self.tokenizer(
prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
with torch.no_grad():
text_embeddings = self.text_encoder(
text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length',
max_length=self.tokenizer.model_max_length, return_tensors='pt')
with torch.no_grad():
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def get_text_embeds_list(self, prompts):
# prompts: [list]
text_embeddings = []
for prompt in prompts:
# Tokenize text and get embeddings
text_input = self.tokenizer(
[prompt], padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
with torch.no_grad():
text_embeddings.append(self.text_encoder(
text_input.input_ids.to(self.device))[0])
return text_embeddings
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5,
latents=None, use_grad_guidance=False, text_format_dict={}):
if latents is None:
latents = torch.randn(
(1, self.unet.in_channels, height // 8, width // 8), device=self.device)
self.scheduler.set_timesteps(num_inference_steps)
n_styles = text_embeddings.shape[0]-1
assert n_styles == len(self.masks)
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
# predict the noise residual
with torch.no_grad():
noise_pred_uncond = self.unet(latents, t, encoder_hidden_states=text_embeddings[:1],
text_format_dict={})['sample']
noise_pred_text = None
for style_i, mask in enumerate(self.masks):
if style_i < len(self.masks) - 1:
masked_latent = latents
noise_pred_text_cur = self.unet(masked_latent, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2],
text_format_dict={})['sample']
else:
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2],
text_format_dict=text_format_dict)['sample']
if noise_pred_text is None:
noise_pred_text = noise_pred_text_cur * mask
else:
noise_pred_text = noise_pred_text + noise_pred_text_cur*mask
# perform classifier-free guidance
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents)[
'prev_sample']
# apply gradient guidance
if use_grad_guidance and t < text_format_dict['guidance_start_step']:
with torch.enable_grad():
if not latents.requires_grad:
latents.requires_grad = True
latents_0 = self.predict_x0(latents, noise_pred, t)
latents_inp = 1 / 0.18215 * latents_0
imgs = self.vae.decode(latents_inp).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
loss_total = 0.
for attn_map, rgb_val in zip(text_format_dict['color_obj_atten'], text_format_dict['target_RGB']):
avg_rgb = (
imgs*attn_map[:, 0]).sum(2).sum(2)/attn_map[:, 0].sum()
loss = self.color_loss(
avg_rgb, rgb_val[:, :, 0, 0])*100
# print(loss)
loss_total += loss
loss_total.backward()
latents = (
latents - latents.grad * text_format_dict['color_guidance_weight']).detach().clone()
return latents
def predict_x0(self, x_t, eps_t, t):
alpha_t = self.scheduler.alphas_cumprod[t]
return (x_t - eps_t * torch.sqrt(1-alpha_t)) / torch.sqrt(alpha_t)
def produce_attn_maps(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
guidance_scale=7.5, latents=None):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
# Prompts -> text embeds
text_embeddings = self.get_text_embeds(
prompts, negative_prompts) # [2, 77, 768]
if latents is None:
latents = torch.randn(
(text_embeddings.shape[0] // 2, self.unet.in_channels, height // 8, width // 8), device=self.device)
self.scheduler.set_timesteps(num_inference_steps)
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings)['sample']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents)[
'prev_sample']
# Img latents -> imgs
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype('uint8')
return imgs
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
with torch.no_grad():
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
guidance_scale=7.5, latents=None, text_format_dict={}, use_grad_guidance=False):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
# Prompts -> text embeds
text_embeds = self.get_text_embeds(
prompts, negative_prompts) # [2, 77, 768]
if len(text_format_dict) > 0:
if 'font_styles' in text_format_dict and text_format_dict['font_styles'] is not None:
text_format_dict['font_styles_embs'] = self.get_text_embeds_list(
text_format_dict['font_styles']) # [2, 77, 768]
else:
text_format_dict['font_styles_embs'] = None
# else:
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents,
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale,
use_grad_guidance=use_grad_guidance, text_format_dict=text_format_dict) # [1, 4, 64, 64]
# Img latents -> imgs
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype('uint8')
return imgs
def reset_attention_maps(self):
r"""Function to reset attention maps.
We reset attention maps because we append them while getting hooks
to visualize attention maps for every step.
"""
for key in self.attention_maps:
self.attention_maps[key] = []
def register_evaluation_hooks(self):
r"""Function for registering hooks during evaluation.
We mainly store activation maps averaged over queries.
"""
self.forward_hooks = []
def save_activations(activations, name, module, inp, out):
r"""
PyTorch Forward hook to save outputs at each forward pass.
"""
# out[0] - final output of attention layer
# out[1] - attention probability matrix
if 'attn2' in name:
assert out[1].shape[-1] == 77
activations[name].append(out[1].detach().cpu())
else:
assert out[1].shape[-1] != 77
attention_dict = collections.defaultdict(list)
for name, module in self.unet.named_modules():
leaf_name = name.split('.')[-1]
if 'attn' in leaf_name:
# Register hook to obtain outputs at every attention layer.
self.forward_hooks.append(module.register_forward_hook(
partial(save_activations, attention_dict, name)
))
# attention_dict is a dictionary containing attention maps for every attention layer
self.attention_maps = attention_dict
def remove_evaluation_hooks(self):
for hook in self.forward_hooks:
hook.remove()
self.attention_maps = None
|