Spaces:
Runtime error
Runtime error
Songwei Ge
commited on
Commit
·
2031452
1
Parent(s):
1ee21db
demo
Browse files- models/__pycache__/attention.cpython-38.pyc +0 -0
- models/__pycache__/region_diffusion.cpython-38.pyc +0 -0
- models/__pycache__/unet_2d_blocks.cpython-38.pyc +0 -0
- models/__pycache__/unet_2d_condition.cpython-38.pyc +0 -0
- models/region_diffusion.py +5 -20
- utils/__pycache__/attention_utils.cpython-38.pyc +0 -0
- utils/__pycache__/richtext_utils.cpython-38.pyc +0 -0
models/__pycache__/attention.cpython-38.pyc
ADDED
Binary file (28.7 kB). View file
|
|
models/__pycache__/region_diffusion.cpython-38.pyc
ADDED
Binary file (8.42 kB). View file
|
|
models/__pycache__/unet_2d_blocks.cpython-38.pyc
ADDED
Binary file (27.8 kB). View file
|
|
models/__pycache__/unet_2d_condition.cpython-38.pyc
ADDED
Binary file (11.4 kB). View file
|
|
models/region_diffusion.py
CHANGED
@@ -15,41 +15,26 @@ class RegionDiffusion(nn.Module):
|
|
15 |
def __init__(self, device):
|
16 |
super().__init__()
|
17 |
|
18 |
-
try:
|
19 |
-
with open('./TOKEN', 'r') as f:
|
20 |
-
self.token = f.read().replace('\n', '') # remove the last \n!
|
21 |
-
print(f'[INFO] loaded hugging face access token from ./TOKEN!')
|
22 |
-
except FileNotFoundError as e:
|
23 |
-
self.token = True
|
24 |
-
print(f'[INFO] try to load hugging face access token from the default place, make sure you have run `huggingface-cli login`.')
|
25 |
-
|
26 |
self.device = device
|
27 |
self.num_train_timesteps = 1000
|
28 |
self.clip_gradient = False
|
29 |
|
30 |
print(f'[INFO] loading stable diffusion...')
|
31 |
-
|
32 |
-
if not os.path.isdir(local_pretrained_dir):
|
33 |
-
save_pretrained = True
|
34 |
-
load_paths = 'runwayml/stable-diffusion-v1-5'
|
35 |
-
os.makedirs(local_pretrained_dir, exist_ok=True)
|
36 |
-
else:
|
37 |
-
save_pretrained = False
|
38 |
-
load_paths = local_pretrained_dir
|
39 |
|
40 |
# 1. Load the autoencoder model which will be used to decode the latents into image space.
|
41 |
self.vae = AutoencoderKL.from_pretrained(
|
42 |
-
|
43 |
|
44 |
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
|
45 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
46 |
-
|
47 |
self.text_encoder = CLIPTextModel.from_pretrained(
|
48 |
-
|
49 |
|
50 |
# 3. The UNet model for generating the latents.
|
51 |
self.unet = UNet2DConditionModel.from_pretrained(
|
52 |
-
|
53 |
|
54 |
if save_pretrained:
|
55 |
self.vae.save_pretrained(os.path.join(local_pretrained_dir, 'vae'))
|
|
|
15 |
def __init__(self, device):
|
16 |
super().__init__()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
self.device = device
|
19 |
self.num_train_timesteps = 1000
|
20 |
self.clip_gradient = False
|
21 |
|
22 |
print(f'[INFO] loading stable diffusion...')
|
23 |
+
model_id = 'runwayml/stable-diffusion-v1-5'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# 1. Load the autoencoder model which will be used to decode the latents into image space.
|
26 |
self.vae = AutoencoderKL.from_pretrained(
|
27 |
+
model_id, subfolder="vae").to(self.device)
|
28 |
|
29 |
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
|
30 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
31 |
+
model_id, subfolder='tokenizer')
|
32 |
self.text_encoder = CLIPTextModel.from_pretrained(
|
33 |
+
model_id, subfolder='text_encoder').to(self.device)
|
34 |
|
35 |
# 3. The UNet model for generating the latents.
|
36 |
self.unet = UNet2DConditionModel.from_pretrained(
|
37 |
+
model_id, subfolder="unet").to(self.device)
|
38 |
|
39 |
if save_pretrained:
|
40 |
self.vae.save_pretrained(os.path.join(local_pretrained_dir, 'vae'))
|
utils/__pycache__/attention_utils.cpython-38.pyc
ADDED
Binary file (5.25 kB). View file
|
|
utils/__pycache__/richtext_utils.cpython-38.pyc
ADDED
Binary file (6.5 kB). View file
|
|