Spaces:
Runtime error
Runtime error
File size: 19,556 Bytes
c5c9597 878e05f c5c9597 878e05f c5c9597 878e05f c5c9597 878e05f c5c9597 878e05f c5c9597 878e05f c5c9597 878e05f c5c9597 ec0aa19 efc717b ec0aa19 c5c9597 40fa6b6 6d96ae6 c5c9597 40fa6b6 6d96ae6 c5c9597 40fa6b6 6d96ae6 c5c9597 40fa6b6 6d96ae6 c5c9597 40fa6b6 c5c9597 d543e01 c5c9597 d543e01 c5c9597 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
"""
Dashboard to visualize the progress of the SomosNLP project.
by Argilla.
This dashboard shows the progress of the SomosNLP project, including the number of annotated and pending records, the top annotators, and the remaining records to be annotated.
The data is fetched from the source datasets and updated every 5 minutes.
Due to Gradio's limitation on what can be passed as input to their graph methods, the data is fetched outside of the graph methods and stored in global variables. Therefore,
a function for each graph-dataset tuple is needed. Moreover, to also avoid circular imports, all the functions must be
in the same Python file. This behavior is not ideal, and could be improved knowing how to pass input parameter to graph functions in Gradio.
"""
import datetime
import os
from typing import Dict, List, Tuple
from uuid import UUID
import altair as alt
from apscheduler.schedulers.background import BackgroundScheduler
import argilla as rg
from argilla.feedback import FeedbackDataset
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
import gradio as gr
import pandas as pd
def get_source_datasets() -> Tuple[
FeedbackDataset | RemoteFeedbackDataset,
FeedbackDataset | RemoteFeedbackDataset,
FeedbackDataset | RemoteFeedbackDataset,
]:
"""
This function returns the source datasets to be showed in the visualization. The datasets names
and the workspace name is obtained from the environment variables.
Returns:
A tuple with the three source datasets
"""
return (
rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET_1"), workspace=os.getenv("SOURCE_WORKSPACE")
),
rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET_2"), workspace=os.getenv("SOURCE_WORKSPACE")
),
rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET_3"), workspace=os.getenv("SOURCE_WORKSPACE")
),
)
def get_user_annotations_dictionary(
datasets: List[FeedbackDataset | RemoteFeedbackDataset],
) -> Dict[str, int]:
"""
This function returns a dictionary with the username as the key and the number of annotations as the value.
All annotationsfrom all datasets are introduced in the same dictionary.
Args:
datasets: A list with the datasets to be used to obtain the annotations and the annotators.
Returns:
A dictionary with the username as the key and the number of annotations as the value.
"""
output = {}
for dataset in datasets:
for record in dataset:
for response in record.responses:
if str(response.user_id) not in output.keys():
output[str(response.user_id)] = 1
else:
output[str(response.user_id)] += 1
# Changing the name of the keys, from the id to the username
for key in list(output.keys()):
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
return output
def donut_chart_1() -> alt.Chart:
"""
This function returns a donut chart with the number of annotated and pending records, for the first dataset
Returns:
An altair chart with the donut chart.
"""
annotated_records = len(dataset1.filter_by(response_status=["submitted"]))
pending_records = len(dataset1) - annotated_records
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": ["Annotated", "Pending"], # Add a new column for categories
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
chart = c1 + c2
return chart
def donut_chart_2() -> alt.Chart:
"""
This function returns a donut chart with the number of annotated and pending records, for the second dataset.
Returns:
An altair chart with the donut chart.
"""
annotated_records = len(dataset2.filter_by(response_status=["submitted"]))
pending_records = len(dataset2) - annotated_records
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": ["Annotated", "Pending"], # Add a new column for categories
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
chart = c1 + c2
return chart
def donut_chart_3() -> alt.Chart:
"""
This function returns a donut chart with the number of annotated and pending records, for the third dataset.
Returns:
An altair chart with the donut chart.
"""
annotated_records = len(dataset3.filter_by(response_status=["submitted"]))
pending_records = len(dataset3) - annotated_records
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": ["Annotated", "Pending"], # Add a new column for categories
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
chart = c1 + c2
return chart
def kpi_chart_submitted_1() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of records that have been annotated, for the first dataset.
Returns:
An altair chart with the KPI chart.
"""
total = len(dataset1.filter_by(response_status=["submitted"]))
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Completados", width=250, height=200)
)
return chart
def kpi_chart_submitted_2() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of records that have been annotated, for the second dataset.
Returns:
An altair chart with the KPI chart.
"""
total = len(dataset2.filter_by(response_status=["submitted"]))
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Completados", width=250, height=200)
)
return chart
def kpi_chart_submitted_3() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of records that have been annotated, for the third dataset.
Returns:
An altair chart with the KPI chart.
"""
total = len(dataset3.filter_by(response_status=["submitted"]))
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Completados", width=250, height=200)
)
return chart
def kpi_chart_remaining_1() -> alt.Chart:
"""
This function returns a KPI chart with the remaining amount of records to be annotated, for the first dataset.
Returns:
An altair chart with the KPI chart.
"""
annotated_records = len(dataset1.filter_by(response_status=["submitted"]))
pending_records = len(dataset1) - annotated_records
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Restantes", width=250, height=200)
)
return chart
def kpi_chart_remaining_2() -> alt.Chart:
"""
This function returns a KPI chart with the remaining amount of records to be annotated, for the second dataset.
Returns:
An altair chart with the KPI chart.
"""
annotated_records = len(dataset2.filter_by(response_status=["submitted"]))
pending_records = len(dataset2) - annotated_records
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Restantes", width=250, height=200)
)
return chart
def kpi_chart_remaining_3() -> alt.Chart:
"""
This function returns a KPI chart with the remaining amount of records to be annotated, for the third dataset.
Returns:
An altair chart with the KPI chart.
"""
annotated_records = len(dataset3.filter_by(response_status=["submitted"]))
pending_records = len(dataset3) - annotated_records
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Restantes", width=250, height=200)
)
return chart
def render_hub_user_link(hub_id: str) -> str:
"""
This function formats the username with a link to the user's profile in the Hugging Face Hub.
Args:
hub_id: The user's id in the Hugging Face Hub.
Returns:
A string with the username formatted as a link to the user's profile in the Hugging Face Hub.
"""
link = f"https://huggingface.co/{hub_id}"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
def kpi_chart_annotators() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotators.
Returns:
An altair chart with the KPI chart.
"""
# Obtain the total amount of annotators
total_annotators = len(user_ids_annotations)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame(
{"Category": ["Total Contributors"], "Value": [total_annotators]}
)
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Contribuidores Totales", width=250, height=200)
)
return chart
def obtain_top_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame:
"""
This function returns the top 50 users with the most annotations. The usernames are formatted as links to the user's profile in the Hugging Face Hub.
Args:
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
Returns:
A pandas dataframe with the top 5 users with the most annotations.
"""
dataframe = pd.DataFrame(
user_ids_annotations.items(), columns=["Name", "Submitted Responses"]
)
dataframe["Name"] = dataframe["Name"].apply(render_hub_user_link)
dataframe = dataframe.sort_values(by="Submitted Responses", ascending=False)
# Renaming the df columns to Spanish
dataframe.columns = ["Nombre", "Respuestas Enviadas"]
return dataframe.head(50)
def get_top() -> pd.DataFrame:
"""
This function returns the top users with the most annotations. The usernames are formatted as links to the user's profile in the Hugging Face Hub.
Returns:
A pandas dataframe with the top users with the most annotations.
"""
return obtain_top_users(user_ids_annotations)
def fetch_data() -> None:
"""
This function fetches the data from the source datasets and updates the global variables.
"""
print(f"Starting to fetch data: {datetime.datetime.now()}")
# Load the dataset as global variable to be able to use it in all Gradio graph methods,
# as they usually do not allow arguments.
global dataset1, dataset2, dataset3, user_ids_annotations
dataset1, dataset2, dataset3 = get_source_datasets()
user_ids_annotations = get_user_annotations_dictionary(
[dataset1, dataset2, dataset3]
)
# Print the current date and time
print(f"Data fetched: {datetime.datetime.now()}")
def main() -> None:
# Set the update interval
update_interval = 300 # seconds
update_interval_charts = 30 # seconds
# Connect to the space with rg.init()
rg.init(
api_url=os.getenv("ARGILLA_API_URL"),
api_key=os.getenv("ARGILLA_API_KEY"),
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
)
# Initial data fetching
fetch_data()
# To avoid the orange border for the Gradio elements that are in constant loading
css = """
.generating {
border: none;
}
"""
with gr.Blocks(css=css, title="LLM Benchmark en Español Dashboard") as demo:
# JSS code to force light theme
demo.load(
None,
None,
js="""
() => {
const params = new URLSearchParams(window.location.search);
if (!params.has('__theme')) {
params.set('__theme', 'light');
window.location.search = params.toString();
}
}""",
)
gr.Markdown(
"""
# 🗣️ SomosNLP LLM Benchmark en Español Dashboard
Esta dashboard, desarrollada en Gradio, muestra el progreso de anotación del Hackathon de LLM en Español, de SomosNLP. En este espacio, puedes valorar traducciones realizadas automática del inglés al español. Tus contribuciones y las del resto de anotadores aparecerán en esta visualización. Si quieres contribuir, puedes anotar siguiendo este [enlace](https://huggingface.co/spaces/somosnlp/benchmark-annotation-argilla).
"""
)
gr.Markdown(
f"""
## 🚀 Progreso del dataset {os.getenv("SOURCE_DATASET_1")}
El dataset ARC-C, creado por AllenAI, contiene un total de 2585 filas con preguntas de nivel escolar, de múltiples opciones, con el fin de evaluar Large Language Models (LLMs) en tareas de question-answering.
"""
)
with gr.Row():
plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_submitted_1,
inputs=[],
outputs=[plot],
)
plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_remaining_1,
inputs=[],
outputs=[plot],
)
# donut_chart_plotted_1 = gr.Plot(label="Plot")
# demo.load(
# donut_chart_1,
# inputs=[],
# outputs=[donut_chart_plotted_1],
# )
gr.Markdown(
f"""
## 🚀 Progreso del dataset {os.getenv("SOURCE_DATASET_2")}
HellaSwag es un conjunto de datos creado por Allen Institute for Artificial Intelligence (AI2) el cual consta de un contexto y de una serie de generaciones como continuación a dicho contexto, que suelen ser tareas de sentido común y fáciles de resolver por humanos.
"""
)
with gr.Row():
plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_submitted_2,
inputs=[],
outputs=[plot],
)
plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_remaining_2,
inputs=[],
outputs=[plot],
)
# donut_chart_plotted_2 = gr.Plot(label="Plot")
# demo.load(
# donut_chart_2,
# inputs=[],
# outputs=[donut_chart_plotted_2],
# )
gr.Markdown(
f"""
## 🚀 Progreso del dataset {os.getenv("SOURCE_DATASET_3")}
"Measuring Massive Multitask Language Understanding", abreviado como MMLU, es un conjunto de datos creado por Center for AI Safety que contiene preguntas con múltiples opciones de una gran diversidad de temas, llegando a cubrir hasta 57 temas o tareas distintas. De este modo, este conjunto de datos es utilizado para evaluar Large Language Models (LLMs), de modo que para que uno de estos modelos sea capaz de obtener un mejor resultado, ha de tener un conocimiento extenso y capacidad de resolución de problemas.
"""
)
with gr.Row():
plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_submitted_3,
inputs=[],
outputs=[plot],
)
plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_remaining_3,
inputs=[],
outputs=[plot],
)
# donut_chart_plotted_3 = gr.Plot(label="Plot")
# demo.load(
# donut_chart_3,
# inputs=[],
# outputs=[donut_chart_plotted_3],
# )
gr.Markdown(
"""
## 👾 Hall de la Fama
Aquí puedes ver el número de contribuidores y los contribuidores con más contribuciones:
"""
)
with gr.Row():
plot2 = gr.Plot(label="Plot")
demo.load(
kpi_chart_annotators,
inputs=[],
outputs=[plot2],
)
top_df_plot = gr.Dataframe(
headers=["Name", "Submitted Responses"],
datatype=[
"markdown",
"number",
],
row_count=50,
col_count=(2, "fixed"),
interactive=False,
)
demo.load(get_top, None, [top_df_plot])
# Launch the Gradio interface
demo.launch()
if __name__ == "__main__":
main()
|