pushing the application
Browse files- .gitignore +160 -0
- README.md +5 -5
- app.py +594 -0
- requirements.txt +72 -0
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
+
title: SomosNLPDashboard
|
3 |
+
emoji: 🌖
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Dashboard to visualize the progress of the SomosNLP project.
|
3 |
+
by Argilla.
|
4 |
+
|
5 |
+
This dashboard shows the progress of the SomosNLP project, including the number of annotated and pending records, the top annotators, and the remaining records to be annotated.
|
6 |
+
The data is fetched from the source datasets and updated every 5 minutes.
|
7 |
+
Due to Gradio's limitation on what can be passed as input to their graph methods, the data is fetched outside of the graph methods and stored in global variables. Therefore,
|
8 |
+
a function for each graph-dataset tuple is needed. Moreover, to also avoid circular imports, all the functions must be
|
9 |
+
in the same Python file. This behavior is not ideal, and could be improved knowing how to pass input parameter to graph functions in Gradio.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import datetime
|
13 |
+
import os
|
14 |
+
from typing import Dict, List, Tuple
|
15 |
+
from uuid import UUID
|
16 |
+
|
17 |
+
import altair as alt
|
18 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
19 |
+
import argilla as rg
|
20 |
+
from argilla.feedback import FeedbackDataset
|
21 |
+
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
|
22 |
+
import gradio as gr
|
23 |
+
import pandas as pd
|
24 |
+
|
25 |
+
|
26 |
+
def get_source_datasets() -> Tuple[
|
27 |
+
FeedbackDataset | RemoteFeedbackDataset,
|
28 |
+
FeedbackDataset | RemoteFeedbackDataset,
|
29 |
+
FeedbackDataset | RemoteFeedbackDataset,
|
30 |
+
]:
|
31 |
+
"""
|
32 |
+
This function returns the source datasets to be showed in the visualization. The datasets names
|
33 |
+
and the workspace name is obtained from the environment variables.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
A tuple with the three source datasets
|
37 |
+
"""
|
38 |
+
|
39 |
+
return (
|
40 |
+
rg.FeedbackDataset.from_argilla(
|
41 |
+
os.getenv("SOURCE_DATASET_1"), workspace=os.getenv("SOURCE_WORKSPACE")
|
42 |
+
),
|
43 |
+
rg.FeedbackDataset.from_argilla(
|
44 |
+
os.getenv("SOURCE_DATASET_2"), workspace=os.getenv("SOURCE_WORKSPACE")
|
45 |
+
),
|
46 |
+
rg.FeedbackDataset.from_argilla(
|
47 |
+
os.getenv("SOURCE_DATASET_3"), workspace=os.getenv("SOURCE_WORKSPACE")
|
48 |
+
),
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def get_user_annotations_dictionary(
|
53 |
+
datasets: List[FeedbackDataset | RemoteFeedbackDataset],
|
54 |
+
) -> Dict[str, int]:
|
55 |
+
"""
|
56 |
+
This function returns a dictionary with the username as the key and the number of annotations as the value.
|
57 |
+
All annotationsfrom all datasets are introduced in the same dictionary.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
datasets: A list with the datasets to be used to obtain the annotations and the annotators.
|
61 |
+
Returns:
|
62 |
+
A dictionary with the username as the key and the number of annotations as the value.
|
63 |
+
"""
|
64 |
+
output = {}
|
65 |
+
for dataset in datasets:
|
66 |
+
for record in dataset:
|
67 |
+
for response in record.responses:
|
68 |
+
if str(response.user_id) not in output.keys():
|
69 |
+
output[str(response.user_id)] = 1
|
70 |
+
else:
|
71 |
+
output[str(response.user_id)] += 1
|
72 |
+
|
73 |
+
# Changing the name of the keys, from the id to the username
|
74 |
+
for key in list(output.keys()):
|
75 |
+
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
|
76 |
+
|
77 |
+
return output
|
78 |
+
|
79 |
+
|
80 |
+
def donut_chart_1() -> alt.Chart:
|
81 |
+
"""
|
82 |
+
This function returns a donut chart with the number of annotated and pending records, for the first dataset
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
An altair chart with the donut chart.
|
86 |
+
"""
|
87 |
+
|
88 |
+
annotated_records = len(dataset1.filter_by(response_status=["submitted"]))
|
89 |
+
pending_records = len(dataset1) - annotated_records
|
90 |
+
|
91 |
+
source = pd.DataFrame(
|
92 |
+
{
|
93 |
+
"values": [annotated_records, pending_records],
|
94 |
+
"category": ["Annotated", "Pending"], # Add a new column for categories
|
95 |
+
}
|
96 |
+
)
|
97 |
+
|
98 |
+
base = alt.Chart(source).encode(
|
99 |
+
theta=alt.Theta("values:Q", stack=True),
|
100 |
+
radius=alt.Radius(
|
101 |
+
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
|
102 |
+
),
|
103 |
+
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
|
104 |
+
)
|
105 |
+
|
106 |
+
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
|
107 |
+
|
108 |
+
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
|
109 |
+
|
110 |
+
chart = c1 + c2
|
111 |
+
|
112 |
+
return chart
|
113 |
+
|
114 |
+
|
115 |
+
def donut_chart_2() -> alt.Chart:
|
116 |
+
"""
|
117 |
+
This function returns a donut chart with the number of annotated and pending records, for the second dataset.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
An altair chart with the donut chart.
|
121 |
+
"""
|
122 |
+
|
123 |
+
annotated_records = len(dataset2.filter_by(response_status=["submitted"]))
|
124 |
+
pending_records = len(dataset2) - annotated_records
|
125 |
+
|
126 |
+
source = pd.DataFrame(
|
127 |
+
{
|
128 |
+
"values": [annotated_records, pending_records],
|
129 |
+
"category": ["Annotated", "Pending"], # Add a new column for categories
|
130 |
+
}
|
131 |
+
)
|
132 |
+
|
133 |
+
base = alt.Chart(source).encode(
|
134 |
+
theta=alt.Theta("values:Q", stack=True),
|
135 |
+
radius=alt.Radius(
|
136 |
+
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
|
137 |
+
),
|
138 |
+
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
|
139 |
+
)
|
140 |
+
|
141 |
+
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
|
142 |
+
|
143 |
+
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
|
144 |
+
|
145 |
+
chart = c1 + c2
|
146 |
+
|
147 |
+
return chart
|
148 |
+
|
149 |
+
|
150 |
+
def donut_chart_3() -> alt.Chart:
|
151 |
+
"""
|
152 |
+
This function returns a donut chart with the number of annotated and pending records, for the third dataset.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
An altair chart with the donut chart.
|
156 |
+
"""
|
157 |
+
|
158 |
+
annotated_records = len(dataset3.filter_by(response_status=["submitted"]))
|
159 |
+
pending_records = len(dataset3) - annotated_records
|
160 |
+
|
161 |
+
source = pd.DataFrame(
|
162 |
+
{
|
163 |
+
"values": [annotated_records, pending_records],
|
164 |
+
"category": ["Annotated", "Pending"], # Add a new column for categories
|
165 |
+
}
|
166 |
+
)
|
167 |
+
|
168 |
+
base = alt.Chart(source).encode(
|
169 |
+
theta=alt.Theta("values:Q", stack=True),
|
170 |
+
radius=alt.Radius(
|
171 |
+
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
|
172 |
+
),
|
173 |
+
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
|
174 |
+
)
|
175 |
+
|
176 |
+
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
|
177 |
+
|
178 |
+
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
|
179 |
+
|
180 |
+
chart = c1 + c2
|
181 |
+
|
182 |
+
return chart
|
183 |
+
|
184 |
+
|
185 |
+
def kpi_chart_submitted_1() -> alt.Chart:
|
186 |
+
"""
|
187 |
+
This function returns a KPI chart with the total amount of records that have been annotated, for the first dataset.
|
188 |
+
|
189 |
+
Returns:
|
190 |
+
An altair chart with the KPI chart.
|
191 |
+
"""
|
192 |
+
|
193 |
+
total = len(dataset1.filter_by(response_status=["submitted"]))
|
194 |
+
|
195 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
196 |
+
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
|
197 |
+
|
198 |
+
# Create Altair chart
|
199 |
+
chart = (
|
200 |
+
alt.Chart(data)
|
201 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
202 |
+
.encode(text="Value:N")
|
203 |
+
.properties(title="Total completed", width=250, height=200)
|
204 |
+
)
|
205 |
+
|
206 |
+
return chart
|
207 |
+
|
208 |
+
|
209 |
+
def kpi_chart_submitted_2() -> alt.Chart:
|
210 |
+
"""
|
211 |
+
This function returns a KPI chart with the total amount of records that have been annotated, for the second dataset.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
An altair chart with the KPI chart.
|
215 |
+
"""
|
216 |
+
|
217 |
+
total = len(dataset2.filter_by(response_status=["submitted"]))
|
218 |
+
|
219 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
220 |
+
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
|
221 |
+
|
222 |
+
# Create Altair chart
|
223 |
+
chart = (
|
224 |
+
alt.Chart(data)
|
225 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
226 |
+
.encode(text="Value:N")
|
227 |
+
.properties(title="Total completed", width=250, height=200)
|
228 |
+
)
|
229 |
+
|
230 |
+
return chart
|
231 |
+
|
232 |
+
|
233 |
+
def kpi_chart_submitted_3() -> alt.Chart:
|
234 |
+
"""
|
235 |
+
This function returns a KPI chart with the total amount of records that have been annotated, for the third dataset.
|
236 |
+
|
237 |
+
Returns:
|
238 |
+
An altair chart with the KPI chart.
|
239 |
+
"""
|
240 |
+
|
241 |
+
total = len(dataset3.filter_by(response_status=["submitted"]))
|
242 |
+
|
243 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
244 |
+
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
|
245 |
+
|
246 |
+
# Create Altair chart
|
247 |
+
chart = (
|
248 |
+
alt.Chart(data)
|
249 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
250 |
+
.encode(text="Value:N")
|
251 |
+
.properties(title="Total completed", width=250, height=200)
|
252 |
+
)
|
253 |
+
|
254 |
+
return chart
|
255 |
+
|
256 |
+
|
257 |
+
def kpi_chart_remaining_1() -> alt.Chart:
|
258 |
+
"""
|
259 |
+
This function returns a KPI chart with the remaining amount of records to be annotated, for the first dataset.
|
260 |
+
|
261 |
+
Returns:
|
262 |
+
An altair chart with the KPI chart.
|
263 |
+
"""
|
264 |
+
|
265 |
+
annotated_records = len(dataset1.filter_by(response_status=["submitted"]))
|
266 |
+
pending_records = len(dataset1) - annotated_records
|
267 |
+
|
268 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
269 |
+
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
|
270 |
+
|
271 |
+
# Create Altair chart
|
272 |
+
chart = (
|
273 |
+
alt.Chart(data)
|
274 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
275 |
+
.encode(text="Value:N")
|
276 |
+
.properties(title="Total remaining", width=250, height=200)
|
277 |
+
)
|
278 |
+
|
279 |
+
return chart
|
280 |
+
|
281 |
+
|
282 |
+
def kpi_chart_remaining_2() -> alt.Chart:
|
283 |
+
"""
|
284 |
+
This function returns a KPI chart with the remaining amount of records to be annotated, for the second dataset.
|
285 |
+
Returns:
|
286 |
+
An altair chart with the KPI chart.
|
287 |
+
"""
|
288 |
+
|
289 |
+
annotated_records = len(dataset2.filter_by(response_status=["submitted"]))
|
290 |
+
pending_records = len(dataset2) - annotated_records
|
291 |
+
|
292 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
293 |
+
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
|
294 |
+
|
295 |
+
# Create Altair chart
|
296 |
+
chart = (
|
297 |
+
alt.Chart(data)
|
298 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
299 |
+
.encode(text="Value:N")
|
300 |
+
.properties(title="Total remaining", width=250, height=200)
|
301 |
+
)
|
302 |
+
|
303 |
+
return chart
|
304 |
+
|
305 |
+
|
306 |
+
def kpi_chart_remaining_3() -> alt.Chart:
|
307 |
+
"""
|
308 |
+
This function returns a KPI chart with the remaining amount of records to be annotated, for the third dataset.
|
309 |
+
|
310 |
+
Returns:
|
311 |
+
An altair chart with the KPI chart.
|
312 |
+
"""
|
313 |
+
|
314 |
+
annotated_records = len(dataset3.filter_by(response_status=["submitted"]))
|
315 |
+
pending_records = len(dataset3) - annotated_records
|
316 |
+
|
317 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
318 |
+
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
|
319 |
+
|
320 |
+
# Create Altair chart
|
321 |
+
chart = (
|
322 |
+
alt.Chart(data)
|
323 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
324 |
+
.encode(text="Value:N")
|
325 |
+
.properties(title="Total remaining", width=250, height=200)
|
326 |
+
)
|
327 |
+
|
328 |
+
return chart
|
329 |
+
|
330 |
+
|
331 |
+
def render_hub_user_link(hub_id: str) -> str:
|
332 |
+
"""
|
333 |
+
This function formats the username with a link to the user's profile in the Hugging Face Hub.
|
334 |
+
|
335 |
+
Args:
|
336 |
+
hub_id: The user's id in the Hugging Face Hub.
|
337 |
+
Returns:
|
338 |
+
A string with the username formatted as a link to the user's profile in the Hugging Face Hub.
|
339 |
+
"""
|
340 |
+
link = f"https://huggingface.co/{hub_id}"
|
341 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
|
342 |
+
|
343 |
+
|
344 |
+
def kpi_chart_annotators() -> alt.Chart:
|
345 |
+
"""
|
346 |
+
This function returns a KPI chart with the total amount of annotators.
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
An altair chart with the KPI chart.
|
350 |
+
"""
|
351 |
+
|
352 |
+
# Obtain the total amount of annotators
|
353 |
+
total_annotators = len(user_ids_annotations)
|
354 |
+
|
355 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
356 |
+
data = pd.DataFrame(
|
357 |
+
{"Category": ["Total Contributors"], "Value": [total_annotators]}
|
358 |
+
)
|
359 |
+
|
360 |
+
# Create Altair chart
|
361 |
+
chart = (
|
362 |
+
alt.Chart(data)
|
363 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
364 |
+
.encode(text="Value:N")
|
365 |
+
.properties(title="Number of Contributors", width=250, height=200)
|
366 |
+
)
|
367 |
+
|
368 |
+
return chart
|
369 |
+
|
370 |
+
|
371 |
+
def obtain_top_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame:
|
372 |
+
"""
|
373 |
+
This function returns the top 50 users with the most annotations. The usernames are formatted as links to the user's profile in the Hugging Face Hub.
|
374 |
+
|
375 |
+
Args:
|
376 |
+
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
|
377 |
+
Returns:
|
378 |
+
A pandas dataframe with the top 5 users with the most annotations.
|
379 |
+
"""
|
380 |
+
|
381 |
+
dataframe = pd.DataFrame(
|
382 |
+
user_ids_annotations.items(), columns=["Name", "Submitted Responses"]
|
383 |
+
)
|
384 |
+
dataframe["Name"] = dataframe["Name"].apply(render_hub_user_link)
|
385 |
+
dataframe = dataframe.sort_values(by="Submitted Responses", ascending=False)
|
386 |
+
return dataframe.head(50)
|
387 |
+
|
388 |
+
|
389 |
+
def get_top() -> pd.DataFrame:
|
390 |
+
"""
|
391 |
+
This function returns the top users with the most annotations. The usernames are formatted as links to the user's profile in the Hugging Face Hub.
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
A pandas dataframe with the top users with the most annotations.
|
395 |
+
"""
|
396 |
+
return obtain_top_users(user_ids_annotations)
|
397 |
+
|
398 |
+
|
399 |
+
def fetch_data() -> None:
|
400 |
+
"""
|
401 |
+
This function fetches the data from the source datasets and updates the global variables.
|
402 |
+
"""
|
403 |
+
|
404 |
+
print(f"Starting to fetch data: {datetime.datetime.now()}")
|
405 |
+
|
406 |
+
# Load the dataset as global variable to be able to use it in all Gradio graph methods,
|
407 |
+
# as they usually do not allow arguments.
|
408 |
+
global dataset1, dataset2, dataset3, user_ids_annotations
|
409 |
+
dataset1, dataset2, dataset3 = get_source_datasets()
|
410 |
+
user_ids_annotations = get_user_annotations_dictionary(
|
411 |
+
[dataset1, dataset2, dataset3]
|
412 |
+
)
|
413 |
+
|
414 |
+
# Print the current date and time
|
415 |
+
print(f"Data fetched: {datetime.datetime.now()}")
|
416 |
+
|
417 |
+
|
418 |
+
def main() -> None:
|
419 |
+
|
420 |
+
# Set the update interval
|
421 |
+
update_interval = 300 # seconds
|
422 |
+
update_interval_charts = 30 # seconds
|
423 |
+
|
424 |
+
# Connect to the space with rg.init()
|
425 |
+
rg.init(
|
426 |
+
api_url=os.getenv("ARGILLA_API_URL"),
|
427 |
+
api_key=os.getenv("ARGILLA_API_KEY"),
|
428 |
+
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
|
429 |
+
)
|
430 |
+
|
431 |
+
# Initial data fetching
|
432 |
+
fetch_data()
|
433 |
+
|
434 |
+
scheduler = BackgroundScheduler()
|
435 |
+
scheduler.add_job(
|
436 |
+
func=fetch_data, trigger="interval", seconds=update_interval, max_instances=1
|
437 |
+
)
|
438 |
+
scheduler.start()
|
439 |
+
|
440 |
+
# To avoid the orange border for the Gradio elements that are in constant loading
|
441 |
+
css = """
|
442 |
+
.generating {
|
443 |
+
border: none;
|
444 |
+
}
|
445 |
+
"""
|
446 |
+
|
447 |
+
with gr.Blocks(css=css, title="LLM Benchmark en Español Dashboard") as demo:
|
448 |
+
|
449 |
+
# JSS code to force light theme
|
450 |
+
demo.load(
|
451 |
+
None,
|
452 |
+
None,
|
453 |
+
js="""
|
454 |
+
() => {
|
455 |
+
const params = new URLSearchParams(window.location.search);
|
456 |
+
if (!params.has('__theme')) {
|
457 |
+
params.set('__theme', 'light');
|
458 |
+
window.location.search = params.toString();
|
459 |
+
}
|
460 |
+
}""",
|
461 |
+
)
|
462 |
+
|
463 |
+
gr.Markdown(
|
464 |
+
"""
|
465 |
+
# 🗣️ SomosNLP Progress Dashboard
|
466 |
+
"""
|
467 |
+
)
|
468 |
+
|
469 |
+
gr.Markdown(
|
470 |
+
f"""
|
471 |
+
## 🚀 Progress in dataset {os.getenv("SOURCE_DATASET_1")}
|
472 |
+
"""
|
473 |
+
)
|
474 |
+
with gr.Row():
|
475 |
+
|
476 |
+
plot = gr.Plot(label="Plot")
|
477 |
+
demo.load(
|
478 |
+
kpi_chart_submitted_1,
|
479 |
+
inputs=[],
|
480 |
+
outputs=[plot],
|
481 |
+
every=update_interval_charts,
|
482 |
+
)
|
483 |
+
|
484 |
+
plot = gr.Plot(label="Plot")
|
485 |
+
demo.load(
|
486 |
+
kpi_chart_remaining_1,
|
487 |
+
inputs=[],
|
488 |
+
outputs=[plot],
|
489 |
+
every=update_interval_charts,
|
490 |
+
)
|
491 |
+
|
492 |
+
# donut_chart_plotted_1 = gr.Plot(label="Plot")
|
493 |
+
# demo.load(
|
494 |
+
# donut_chart_1,
|
495 |
+
# inputs=[],
|
496 |
+
# outputs=[donut_chart_plotted_1],
|
497 |
+
# )
|
498 |
+
|
499 |
+
gr.Markdown(
|
500 |
+
f"""
|
501 |
+
## 🚀 Progress in dataset {os.getenv("SOURCE_DATASET_2")}
|
502 |
+
"""
|
503 |
+
)
|
504 |
+
with gr.Row():
|
505 |
+
|
506 |
+
plot = gr.Plot(label="Plot")
|
507 |
+
demo.load(
|
508 |
+
kpi_chart_submitted_2,
|
509 |
+
inputs=[],
|
510 |
+
outputs=[plot],
|
511 |
+
every=update_interval_charts,
|
512 |
+
)
|
513 |
+
|
514 |
+
plot = gr.Plot(label="Plot")
|
515 |
+
demo.load(
|
516 |
+
kpi_chart_remaining_2,
|
517 |
+
inputs=[],
|
518 |
+
outputs=[plot],
|
519 |
+
every=update_interval_charts,
|
520 |
+
)
|
521 |
+
|
522 |
+
# donut_chart_plotted_2 = gr.Plot(label="Plot")
|
523 |
+
# demo.load(
|
524 |
+
# donut_chart_2,
|
525 |
+
# inputs=[],
|
526 |
+
# outputs=[donut_chart_plotted_2],
|
527 |
+
# )
|
528 |
+
|
529 |
+
gr.Markdown(
|
530 |
+
f"""
|
531 |
+
## 🚀 Progress in dataset {os.getenv("SOURCE_DATASET_3")}
|
532 |
+
"""
|
533 |
+
)
|
534 |
+
with gr.Row():
|
535 |
+
|
536 |
+
plot = gr.Plot(label="Plot")
|
537 |
+
demo.load(
|
538 |
+
kpi_chart_submitted_3,
|
539 |
+
inputs=[],
|
540 |
+
outputs=[plot],
|
541 |
+
every=update_interval_charts,
|
542 |
+
)
|
543 |
+
|
544 |
+
plot = gr.Plot(label="Plot")
|
545 |
+
demo.load(
|
546 |
+
kpi_chart_remaining_3,
|
547 |
+
inputs=[],
|
548 |
+
outputs=[plot],
|
549 |
+
every=update_interval_charts,
|
550 |
+
)
|
551 |
+
|
552 |
+
# donut_chart_plotted_3 = gr.Plot(label="Plot")
|
553 |
+
# demo.load(
|
554 |
+
# donut_chart_3,
|
555 |
+
# inputs=[],
|
556 |
+
# outputs=[donut_chart_plotted_3],
|
557 |
+
# )
|
558 |
+
|
559 |
+
gr.Markdown(
|
560 |
+
"""
|
561 |
+
## 👾 Contributors Hall of Fame
|
562 |
+
The number of all contributors and the top contributors:
|
563 |
+
"""
|
564 |
+
)
|
565 |
+
|
566 |
+
with gr.Row():
|
567 |
+
|
568 |
+
plot2 = gr.Plot(label="Plot")
|
569 |
+
demo.load(
|
570 |
+
kpi_chart_annotators,
|
571 |
+
inputs=[],
|
572 |
+
outputs=[plot2],
|
573 |
+
every=update_interval_charts,
|
574 |
+
)
|
575 |
+
|
576 |
+
top_df_plot = gr.Dataframe(
|
577 |
+
headers=["Name", "Submitted Responses"],
|
578 |
+
datatype=[
|
579 |
+
"markdown",
|
580 |
+
"number",
|
581 |
+
],
|
582 |
+
row_count=50,
|
583 |
+
col_count=(2, "fixed"),
|
584 |
+
interactive=False,
|
585 |
+
)
|
586 |
+
|
587 |
+
demo.load(get_top, None, [top_df_plot], every=update_interval_charts)
|
588 |
+
|
589 |
+
# Launch the Gradio interface
|
590 |
+
demo.launch(share=True, debug=True)
|
591 |
+
|
592 |
+
|
593 |
+
if __name__ == "__main__":
|
594 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
altair==5.2.0
|
3 |
+
annotated-types==0.6.0
|
4 |
+
anyio==4.2.0
|
5 |
+
apscheduler==3.10.4
|
6 |
+
argilla==1.23.0
|
7 |
+
attrs==23.2.0
|
8 |
+
backoff==2.2.1
|
9 |
+
certifi==2024.2.2
|
10 |
+
charset-normalizer==3.3.2
|
11 |
+
click==8.1.7
|
12 |
+
colorama==0.4.6
|
13 |
+
contourpy==1.2.0
|
14 |
+
cycler==0.12.1
|
15 |
+
Deprecated==1.2.14
|
16 |
+
exceptiongroup==1.2.0
|
17 |
+
fastapi==0.109.2
|
18 |
+
ffmpy==0.3.1
|
19 |
+
filelock==3.13.1
|
20 |
+
fonttools==4.48.1
|
21 |
+
fsspec==2024.2.0
|
22 |
+
gradio==4.17.0
|
23 |
+
gradio_client==0.9.0
|
24 |
+
h11==0.14.0
|
25 |
+
httpcore==1.0.2
|
26 |
+
httpx==0.26.0
|
27 |
+
huggingface-hub==0.20.3
|
28 |
+
idna==3.6
|
29 |
+
importlib-resources==6.1.1
|
30 |
+
Jinja2==3.1.3
|
31 |
+
jsonschema==4.21.1
|
32 |
+
jsonschema-specifications==2023.12.1
|
33 |
+
kiwisolver==1.4.5
|
34 |
+
markdown-it-py==3.0.0
|
35 |
+
MarkupSafe==2.1.5
|
36 |
+
matplotlib==3.8.2
|
37 |
+
mdurl==0.1.2
|
38 |
+
monotonic==1.6
|
39 |
+
numpy==1.23.5
|
40 |
+
orjson==3.9.13
|
41 |
+
packaging==23.2
|
42 |
+
pandas==1.5.3
|
43 |
+
pillow==10.2.0
|
44 |
+
pydantic==2.6.1
|
45 |
+
pydantic_core==2.16.2
|
46 |
+
pydub==0.25.1
|
47 |
+
Pygments==2.17.2
|
48 |
+
pyparsing==3.1.1
|
49 |
+
python-dateutil==2.8.2
|
50 |
+
python-multipart==0.0.7
|
51 |
+
pytz==2024.1
|
52 |
+
PyYAML==6.0.1
|
53 |
+
referencing==0.33.0
|
54 |
+
requests==2.31.0
|
55 |
+
rich==13.7.0
|
56 |
+
rpds-py==0.17.1
|
57 |
+
ruff==0.2.1
|
58 |
+
semantic-version==2.10.0
|
59 |
+
shellingham==1.5.4
|
60 |
+
six==1.16.0
|
61 |
+
sniffio==1.3.0
|
62 |
+
starlette==0.36.3
|
63 |
+
tomlkit==0.12.0
|
64 |
+
toolz==0.12.1
|
65 |
+
tqdm==4.66.1
|
66 |
+
typer==0.9.0
|
67 |
+
typing_extensions==4.9.0
|
68 |
+
urllib3==2.2.0
|
69 |
+
uvicorn==0.27.0.post1
|
70 |
+
vega-datasets==0.9.0
|
71 |
+
websockets==11.0.3
|
72 |
+
wrapt==1.14.1
|