File size: 6,228 Bytes
df4ab84 b38f27e df4ab84 3226a63 df4ab84 b38f27e df4ab84 b38f27e 3226a63 df4ab84 b38f27e df4ab84 2a183bf df4ab84 b38f27e df4ab84 3226a63 df4ab84 b38f27e df4ab84 3226a63 df4ab84 b38f27e df4ab84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import spaces
import gradio as gr
import time
import torch
from PIL import Image
from segment_utils import(
segment_image,
restore_result,
)
from upscale import upscale_image
DEFAULT_SRC_PROMPT = "a person"
DEFAULT_EDIT_PROMPT = "a person with perfect face"
DEFAULT_CATEGORY = "face"
device = "cuda" if torch.cuda.is_available() else "cpu"
def create_demo() -> gr.Blocks:
from inversion_run_base import run as base_run
@spaces.GPU(duration=30)
def image_to_image(
input_image: Image,
input_image_prompt: str,
edit_prompt: str,
seed: int,
w1: float,
num_steps: int,
start_step: int,
guidance_scale: float,
generate_size: int,
upscale_prompt: str,
upscale_start_size: int = 256,
upscale_steps: int = 10,
pre_upscale: bool = True,
pre_upscale_start_size: int = 128,
pre_upscale_steps: int = 30,
):
w2 = 1.0
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
if pre_upscale:
input_image = upscale_image(
input_image,
upscale_prompt,
start_size=pre_upscale_start_size,
upscale_steps=pre_upscale_steps,
)
input_image = input_image.resize((generate_size, generate_size))
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
run_model = base_run
res_image = run_model(
input_image,
input_image_prompt,
edit_prompt,
generate_size,
seed,
w1,
w2,
num_steps,
start_step,
guidance_scale,
)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
enhanced_image = upscale_image(
res_image,
upscale_prompt,
start_size=upscale_start_size,
upscale_steps=upscale_steps,
)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
enhanced_image = enhanced_image.resize((generate_size, generate_size))
return enhanced_image, res_image, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
with gr.Accordion("Advanced Options", open=False):
upscale_prompt = gr.Textbox(lines=1, label="Upscale Prompt", value="a person with pefect face")
upscale_start_size = gr.Number(label="Upscale Start Size", value=256)
upscale_steps = gr.Number(label="Upscale Steps", value=10)
pre_upscale = gr.Checkbox(label="Pre Upscale", value=True)
pre_upscale_start_size = gr.Number(label="Pre Upscale Start Size", value=128)
pre_upscale_steps = gr.Number(label="Pre Upscale Steps", value=30)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Num Steps")
start_step = gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Start Step")
with gr.Accordion("Advanced Options", open=False):
guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale")
generate_size = gr.Number(label="Generate Size", value=256)
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
with gr.Column():
seed = gr.Number(label="Seed", value=8)
w1 = gr.Number(label="W1", value=1.5)
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False)
download_path = gr.File(label="Download the output image", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False)
enhanced_image = gr.Image(label="Enhanced Image", format="png", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
generated_image = gr.Image(label="Generated Image", format="png", type="pil", interactive=False)
g_btn.click(
fn=segment_image,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step,
guidance_scale, generate_size, upscale_prompt, upscale_start_size, upscale_steps,
pre_upscale, pre_upscale_start_size, pre_upscale_steps],
outputs=[enhanced_image, generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, enhanced_image],
outputs=[restored_image, download_path],
)
return demo |