zhiweili
commited on
Commit
•
df4ab84
1
Parent(s):
90bea68
initial commit
Browse files- .gitignore +3 -0
- README.md +1 -0
- app.py +10 -0
- app_base.py +120 -0
- checkpoints/selfie_multiclass_256x256.tflite +3 -0
- config.py +141 -0
- croper.py +108 -0
- enhance_utils.py +91 -0
- inversion_run_base.py +218 -0
- inversion_utils.py +794 -0
- requirements.txt +17 -0
- run_configs/noise_shift_3_steps.yaml +19 -0
- run_configs/noise_shift_guidance_1_5.yaml +18 -0
- segment_utils.py +98 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
.DS_Store
|
3 |
+
__pycache__
|
README.md
CHANGED
@@ -10,4 +10,5 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
|
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Modified from: https://huggingface.co/spaces/turboedit/turbo_edit
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from app_base import create_demo as create_demo_face
|
4 |
+
|
5 |
+
with gr.Blocks(css="style.css") as demo:
|
6 |
+
with gr.Tabs():
|
7 |
+
with gr.Tab(label="Face"):
|
8 |
+
create_demo_face()
|
9 |
+
|
10 |
+
demo.launch()
|
app_base.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
from segment_utils import(
|
8 |
+
segment_image,
|
9 |
+
restore_result,
|
10 |
+
)
|
11 |
+
from enhance_utils import enhance_image
|
12 |
+
|
13 |
+
DEFAULT_SRC_PROMPT = "a woman, photo"
|
14 |
+
DEFAULT_EDIT_PROMPT = "a beautiful woman, photo, hollywood style face, 8k, high quality"
|
15 |
+
|
16 |
+
DEFAULT_CATEGORY = "face"
|
17 |
+
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
|
20 |
+
def create_demo() -> gr.Blocks:
|
21 |
+
from inversion_run_base import run as base_run
|
22 |
+
|
23 |
+
@spaces.GPU(duration=30)
|
24 |
+
def image_to_image(
|
25 |
+
input_image: Image,
|
26 |
+
input_image_prompt: str,
|
27 |
+
edit_prompt: str,
|
28 |
+
seed: int,
|
29 |
+
w1: float,
|
30 |
+
num_steps: int,
|
31 |
+
start_step: int,
|
32 |
+
guidance_scale: float,
|
33 |
+
generate_size: int,
|
34 |
+
enhance_scale: int,
|
35 |
+
enhance_face: bool = True,
|
36 |
+
):
|
37 |
+
w2 = 1.0
|
38 |
+
run_task_time = 0
|
39 |
+
time_cost_str = ''
|
40 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
41 |
+
run_model = base_run
|
42 |
+
res_image = run_model(
|
43 |
+
input_image,
|
44 |
+
input_image_prompt,
|
45 |
+
edit_prompt,
|
46 |
+
generate_size,
|
47 |
+
seed,
|
48 |
+
w1,
|
49 |
+
w2,
|
50 |
+
num_steps,
|
51 |
+
start_step,
|
52 |
+
guidance_scale,
|
53 |
+
)
|
54 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
55 |
+
enhance_mode = 0 if enhance_face else 2
|
56 |
+
enhanced_image = enhance_image(res_image, enhance_scale, enhance_mode)
|
57 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
58 |
+
|
59 |
+
return enhanced_image, res_image, time_cost_str
|
60 |
+
|
61 |
+
def get_time_cost(run_task_time, time_cost_str):
|
62 |
+
now_time = int(time.time()*1000)
|
63 |
+
if run_task_time == 0:
|
64 |
+
time_cost_str = 'start'
|
65 |
+
else:
|
66 |
+
if time_cost_str != '':
|
67 |
+
time_cost_str += f'-->'
|
68 |
+
time_cost_str += f'{now_time - run_task_time}'
|
69 |
+
run_task_time = now_time
|
70 |
+
return run_task_time, time_cost_str
|
71 |
+
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
croper = gr.State()
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
|
77 |
+
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
|
78 |
+
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
|
79 |
+
with gr.Column():
|
80 |
+
num_steps = gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Num Steps")
|
81 |
+
start_step = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Start Step")
|
82 |
+
with gr.Accordion("Advanced Options", open=False):
|
83 |
+
guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale")
|
84 |
+
generate_size = gr.Number(label="Generate Size", value=1024)
|
85 |
+
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
86 |
+
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
87 |
+
enhance_scale = gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Enhance Scale")
|
88 |
+
enhance_face = gr.Checkbox(label="Enhance Face", value=False)
|
89 |
+
with gr.Column():
|
90 |
+
seed = gr.Number(label="Seed", value=8)
|
91 |
+
w1 = gr.Number(label="W1", value=2)
|
92 |
+
g_btn = gr.Button("Edit Image")
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
with gr.Column():
|
96 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
97 |
+
with gr.Column():
|
98 |
+
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False)
|
99 |
+
download_path = gr.File(label="Download the output image", interactive=False)
|
100 |
+
with gr.Column():
|
101 |
+
origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False)
|
102 |
+
enhanced_image = gr.Image(label="Enhanced Image", format="png", type="pil", interactive=False)
|
103 |
+
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
|
104 |
+
generated_image = gr.Image(label="Generated Image", format="png", type="pil", interactive=False)
|
105 |
+
|
106 |
+
g_btn.click(
|
107 |
+
fn=segment_image,
|
108 |
+
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
|
109 |
+
outputs=[origin_area_image, croper],
|
110 |
+
).success(
|
111 |
+
fn=image_to_image,
|
112 |
+
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, enhance_scale, enhance_face],
|
113 |
+
outputs=[enhanced_image, generated_image, generated_cost],
|
114 |
+
).success(
|
115 |
+
fn=restore_result,
|
116 |
+
inputs=[croper, category, enhanced_image],
|
117 |
+
outputs=[restored_image, download_path],
|
118 |
+
)
|
119 |
+
|
120 |
+
return demo
|
checkpoints/selfie_multiclass_256x256.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6748b1253a99067ef71f7e26ca71096cd449baefa8f101900ea23016507e0e0
|
3 |
+
size 16371837
|
config.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ml_collections import config_dict
|
2 |
+
import yaml
|
3 |
+
from diffusers.schedulers import (
|
4 |
+
DDIMScheduler,
|
5 |
+
EulerAncestralDiscreteScheduler,
|
6 |
+
EulerDiscreteScheduler,
|
7 |
+
DDPMScheduler,
|
8 |
+
)
|
9 |
+
from inversion_utils import (
|
10 |
+
deterministic_ddim_step,
|
11 |
+
deterministic_ddpm_step,
|
12 |
+
deterministic_euler_step,
|
13 |
+
deterministic_non_ancestral_euler_step,
|
14 |
+
)
|
15 |
+
|
16 |
+
BREAKDOWNS = ["x_t_c_hat", "x_t_hat_c", "no_breakdown", "x_t_hat_c_with_zeros"]
|
17 |
+
SCHEDULERS = ["ddpm", "ddim", "euler", "euler_non_ancestral"]
|
18 |
+
MODELS = [
|
19 |
+
"stabilityai/sdxl-turbo",
|
20 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
21 |
+
"CompVis/stable-diffusion-v1-4",
|
22 |
+
]
|
23 |
+
|
24 |
+
def get_num_steps_actual(cfg):
|
25 |
+
return (
|
26 |
+
cfg.num_steps_inversion
|
27 |
+
- cfg.step_start
|
28 |
+
+ (1 if cfg.clean_step_timestep > 0 else 0)
|
29 |
+
if cfg.timesteps is None
|
30 |
+
else len(cfg.timesteps) + (1 if cfg.clean_step_timestep > 0 else 0)
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def get_config(args):
|
35 |
+
if args.config_from_file and args.config_from_file != "":
|
36 |
+
with open(args.config_from_file, "r") as f:
|
37 |
+
cfg = config_dict.ConfigDict(yaml.safe_load(f))
|
38 |
+
|
39 |
+
num_steps_actual = get_num_steps_actual(cfg)
|
40 |
+
|
41 |
+
else:
|
42 |
+
cfg = config_dict.ConfigDict()
|
43 |
+
|
44 |
+
cfg.seed = 2
|
45 |
+
cfg.self_r = 0.5
|
46 |
+
cfg.cross_r = 0.9
|
47 |
+
cfg.eta = 1
|
48 |
+
cfg.scheduler_type = SCHEDULERS[0]
|
49 |
+
|
50 |
+
cfg.num_steps_inversion = 50 # timesteps: 999, 799, 599, 399, 199
|
51 |
+
cfg.step_start = 20
|
52 |
+
cfg.timesteps = None
|
53 |
+
cfg.noise_timesteps = None
|
54 |
+
num_steps_actual = get_num_steps_actual(cfg)
|
55 |
+
cfg.ws1 = [2] * num_steps_actual
|
56 |
+
cfg.ws2 = [1] * num_steps_actual
|
57 |
+
cfg.real_cfg_scale = 0
|
58 |
+
cfg.real_cfg_scale_save = 0
|
59 |
+
cfg.breakdown = BREAKDOWNS[1]
|
60 |
+
cfg.noise_shift_delta = 1
|
61 |
+
cfg.max_norm_zs = [-1] * (num_steps_actual - 1) + [15.5]
|
62 |
+
|
63 |
+
cfg.clean_step_timestep = 0
|
64 |
+
|
65 |
+
cfg.model = MODELS[1]
|
66 |
+
|
67 |
+
if cfg.scheduler_type == "ddim":
|
68 |
+
cfg.scheduler_class = DDIMScheduler
|
69 |
+
cfg.step_function = deterministic_ddim_step
|
70 |
+
elif cfg.scheduler_type == "ddpm":
|
71 |
+
cfg.scheduler_class = DDPMScheduler
|
72 |
+
cfg.step_function = deterministic_ddpm_step
|
73 |
+
elif cfg.scheduler_type == "euler":
|
74 |
+
cfg.scheduler_class = EulerAncestralDiscreteScheduler
|
75 |
+
cfg.step_function = deterministic_euler_step
|
76 |
+
elif cfg.scheduler_type == "euler_non_ancestral":
|
77 |
+
cfg.scheduler_class = EulerDiscreteScheduler
|
78 |
+
cfg.step_function = deterministic_non_ancestral_euler_step
|
79 |
+
else:
|
80 |
+
raise ValueError(f"Unknown scheduler type: {cfg.scheduler_type}")
|
81 |
+
|
82 |
+
with cfg.ignore_type():
|
83 |
+
if isinstance(cfg.max_norm_zs, (int, float)):
|
84 |
+
cfg.max_norm_zs = [cfg.max_norm_zs] * num_steps_actual
|
85 |
+
|
86 |
+
if isinstance(cfg.ws1, (int, float)):
|
87 |
+
cfg.ws1 = [cfg.ws1] * num_steps_actual
|
88 |
+
|
89 |
+
if isinstance(cfg.ws2, (int, float)):
|
90 |
+
cfg.ws2 = [cfg.ws2] * num_steps_actual
|
91 |
+
|
92 |
+
if not hasattr(cfg, "update_eta"):
|
93 |
+
cfg.update_eta = False
|
94 |
+
|
95 |
+
if not hasattr(cfg, "save_timesteps"):
|
96 |
+
cfg.save_timesteps = None
|
97 |
+
|
98 |
+
if not hasattr(cfg, "scheduler_timesteps"):
|
99 |
+
cfg.scheduler_timesteps = None
|
100 |
+
|
101 |
+
assert (
|
102 |
+
cfg.scheduler_type == "ddpm" or cfg.timesteps is None
|
103 |
+
), "timesteps must be None for ddim/euler"
|
104 |
+
|
105 |
+
cfg.max_norm_zs = [-1] * (num_steps_actual - 1) + [15.5]
|
106 |
+
assert (
|
107 |
+
len(cfg.max_norm_zs) == num_steps_actual
|
108 |
+
), f"len(cfg.max_norm_zs) ({len(cfg.max_norm_zs)}) != num_steps_actual ({num_steps_actual})"
|
109 |
+
|
110 |
+
assert (
|
111 |
+
len(cfg.ws1) == num_steps_actual
|
112 |
+
), f"len(cfg.ws1) ({len(cfg.ws1)}) != num_steps_actual ({num_steps_actual})"
|
113 |
+
|
114 |
+
assert (
|
115 |
+
len(cfg.ws2) == num_steps_actual
|
116 |
+
), f"len(cfg.ws2) ({len(cfg.ws2)}) != num_steps_actual ({num_steps_actual})"
|
117 |
+
|
118 |
+
assert cfg.noise_timesteps is None or len(cfg.noise_timesteps) == (
|
119 |
+
num_steps_actual - (1 if cfg.clean_step_timestep > 0 else 0)
|
120 |
+
), f"len(cfg.noise_timesteps) ({len(cfg.noise_timesteps)}) != num_steps_actual ({num_steps_actual})"
|
121 |
+
|
122 |
+
assert cfg.save_timesteps is None or len(cfg.save_timesteps) == (
|
123 |
+
num_steps_actual - (1 if cfg.clean_step_timestep > 0 else 0)
|
124 |
+
), f"len(cfg.save_timesteps) ({len(cfg.save_timesteps)}) != num_steps_actual ({num_steps_actual})"
|
125 |
+
|
126 |
+
return cfg
|
127 |
+
|
128 |
+
|
129 |
+
def get_config_name(config, args):
|
130 |
+
if args.folder_name is not None and args.folder_name != "":
|
131 |
+
return args.folder_name
|
132 |
+
timesteps_str = (
|
133 |
+
f"step_start {config.step_start}"
|
134 |
+
if config.timesteps is None
|
135 |
+
else f"timesteps {config.timesteps}"
|
136 |
+
)
|
137 |
+
return f"""\
|
138 |
+
ws1 {config.ws1[0]} ws2 {config.ws2[0]} real_cfg_scale {config.real_cfg_scale} {timesteps_str} \
|
139 |
+
real_cfg_scale_save {config.real_cfg_scale_save} seed {config.seed} max_norm_zs {config.max_norm_zs[-1]} noise_shift_delta {config.noise_shift_delta} \
|
140 |
+
scheduler_type {config.scheduler_type} fp16 {args.fp16}\
|
141 |
+
"""
|
croper.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
class Croper:
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
input_image: PIL.Image,
|
10 |
+
target_mask: np.ndarray,
|
11 |
+
mask_size: int = 256,
|
12 |
+
mask_expansion: int = 20,
|
13 |
+
):
|
14 |
+
self.input_image = input_image
|
15 |
+
self.target_mask = target_mask
|
16 |
+
self.mask_size = mask_size
|
17 |
+
self.mask_expansion = mask_expansion
|
18 |
+
|
19 |
+
def corp_mask_image(self):
|
20 |
+
target_mask = self.target_mask
|
21 |
+
input_image = self.input_image
|
22 |
+
mask_expansion = self.mask_expansion
|
23 |
+
original_width, original_height = input_image.size
|
24 |
+
mask_indices = np.where(target_mask)
|
25 |
+
start_y = np.min(mask_indices[0])
|
26 |
+
end_y = np.max(mask_indices[0])
|
27 |
+
start_x = np.min(mask_indices[1])
|
28 |
+
end_x = np.max(mask_indices[1])
|
29 |
+
mask_height = end_y - start_y
|
30 |
+
mask_width = end_x - start_x
|
31 |
+
# choose the max side length
|
32 |
+
max_side_length = max(mask_height, mask_width)
|
33 |
+
# expand the mask area
|
34 |
+
height_diff = (max_side_length - mask_height) // 2
|
35 |
+
width_diff = (max_side_length - mask_width) // 2
|
36 |
+
start_y = start_y - mask_expansion - height_diff
|
37 |
+
if start_y < 0:
|
38 |
+
start_y = 0
|
39 |
+
end_y = end_y + mask_expansion + height_diff
|
40 |
+
if end_y > original_height:
|
41 |
+
end_y = original_height
|
42 |
+
start_x = start_x - mask_expansion - width_diff
|
43 |
+
if start_x < 0:
|
44 |
+
start_x = 0
|
45 |
+
end_x = end_x + mask_expansion + width_diff
|
46 |
+
if end_x > original_width:
|
47 |
+
end_x = original_width
|
48 |
+
expanded_height = end_y - start_y
|
49 |
+
expanded_width = end_x - start_x
|
50 |
+
expanded_max_side_length = max(expanded_height, expanded_width)
|
51 |
+
# calculate the crop area
|
52 |
+
crop_mask = target_mask[start_y:end_y, start_x:end_x]
|
53 |
+
crop_mask_start_y = (expanded_max_side_length - expanded_height) // 2
|
54 |
+
crop_mask_end_y = crop_mask_start_y + expanded_height
|
55 |
+
crop_mask_start_x = (expanded_max_side_length - expanded_width) // 2
|
56 |
+
crop_mask_end_x = crop_mask_start_x + expanded_width
|
57 |
+
# create a square mask
|
58 |
+
square_mask = np.zeros((expanded_max_side_length, expanded_max_side_length), dtype=target_mask.dtype)
|
59 |
+
square_mask[crop_mask_start_y:crop_mask_end_y, crop_mask_start_x:crop_mask_end_x] = crop_mask
|
60 |
+
square_mask_image = Image.fromarray((square_mask * 255).astype(np.uint8))
|
61 |
+
|
62 |
+
crop_image = input_image.crop((start_x, start_y, end_x, end_y))
|
63 |
+
square_image = Image.new("RGB", (expanded_max_side_length, expanded_max_side_length))
|
64 |
+
square_image.paste(crop_image, (crop_mask_start_x, crop_mask_start_y))
|
65 |
+
|
66 |
+
self.origin_start_x = start_x
|
67 |
+
self.origin_start_y = start_y
|
68 |
+
self.origin_end_x = end_x
|
69 |
+
self.origin_end_y = end_y
|
70 |
+
|
71 |
+
self.square_start_x = crop_mask_start_x
|
72 |
+
self.square_start_y = crop_mask_start_y
|
73 |
+
self.square_end_x = crop_mask_end_x
|
74 |
+
self.square_end_y = crop_mask_end_y
|
75 |
+
|
76 |
+
self.square_length = expanded_max_side_length
|
77 |
+
self.square_mask_image = square_mask_image
|
78 |
+
self.square_image = square_image
|
79 |
+
self.corp_mask = crop_mask
|
80 |
+
|
81 |
+
mask_size = self.mask_size
|
82 |
+
self.resized_square_mask_image = square_mask_image.resize((mask_size, mask_size))
|
83 |
+
self.resized_square_image = square_image.resize((mask_size, mask_size))
|
84 |
+
|
85 |
+
return self.resized_square_mask_image
|
86 |
+
|
87 |
+
def restore_result(self, generated_image):
|
88 |
+
square_length = self.square_length
|
89 |
+
generated_image = generated_image.resize((square_length, square_length))
|
90 |
+
square_mask_image = self.square_mask_image
|
91 |
+
cropped_generated_image = generated_image.crop((self.square_start_x, self.square_start_y, self.square_end_x, self.square_end_y))
|
92 |
+
cropped_square_mask_image = square_mask_image.crop((self.square_start_x, self.square_start_y, self.square_end_x, self.square_end_y))
|
93 |
+
|
94 |
+
restored_image = self.input_image.copy()
|
95 |
+
restored_image.paste(cropped_generated_image, (self.origin_start_x, self.origin_start_y), cropped_square_mask_image)
|
96 |
+
|
97 |
+
return restored_image
|
98 |
+
|
99 |
+
def restore_result_v2(self, generated_image):
|
100 |
+
square_length = self.square_length
|
101 |
+
generated_image = generated_image.resize((square_length, square_length))
|
102 |
+
cropped_generated_image = generated_image.crop((self.square_start_x, self.square_start_y, self.square_end_x, self.square_end_y))
|
103 |
+
|
104 |
+
restored_image = self.input_image.copy()
|
105 |
+
restored_image.paste(cropped_generated_image, (self.origin_start_x, self.origin_start_y))
|
106 |
+
|
107 |
+
return restored_image
|
108 |
+
|
enhance_utils.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
from gfpgan.utils import GFPGANer
|
8 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
9 |
+
from realesrgan.utils import RealESRGANer
|
10 |
+
|
11 |
+
|
12 |
+
def runcmd(cmd, verbose = False, *args, **kwargs):
|
13 |
+
|
14 |
+
process = subprocess.Popen(
|
15 |
+
cmd,
|
16 |
+
stdout = subprocess.PIPE,
|
17 |
+
stderr = subprocess.PIPE,
|
18 |
+
text = True,
|
19 |
+
shell = True
|
20 |
+
)
|
21 |
+
std_out, std_err = process.communicate()
|
22 |
+
if verbose:
|
23 |
+
print(std_out.strip(), std_err)
|
24 |
+
pass
|
25 |
+
|
26 |
+
if not os.path.exists('GFPGANv1.4.pth'):
|
27 |
+
runcmd("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
28 |
+
if not os.path.exists('realesr-general-x4v3.pth'):
|
29 |
+
runcmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
30 |
+
|
31 |
+
os.makedirs('output', exist_ok=True)
|
32 |
+
|
33 |
+
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
34 |
+
model_path = 'realesr-general-x4v3.pth'
|
35 |
+
half = True if torch.cuda.is_available() else False
|
36 |
+
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
37 |
+
|
38 |
+
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2)
|
39 |
+
|
40 |
+
|
41 |
+
def enhance_image(
|
42 |
+
input_image: Image,
|
43 |
+
scale: int,
|
44 |
+
enhance_mode: int,
|
45 |
+
keep_size: bool = False,
|
46 |
+
):
|
47 |
+
only_face = enhance_mode == 1
|
48 |
+
enhance_face = enhance_mode != 2
|
49 |
+
|
50 |
+
if enhance_mode == 1:
|
51 |
+
face_enhancer.upscale = scale
|
52 |
+
face_enhancer.bg_upsampler = None
|
53 |
+
elif enhance_mode == 2:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
face_enhancer.upscale = scale
|
57 |
+
face_enhancer.bg_upsampler = upsampler
|
58 |
+
|
59 |
+
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
60 |
+
|
61 |
+
h, w = img.shape[0:2]
|
62 |
+
if h < 300:
|
63 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
64 |
+
|
65 |
+
max_size = 3480 / scale
|
66 |
+
if h > max_size:
|
67 |
+
w = int(w * max_size / h)
|
68 |
+
h = max_size
|
69 |
+
|
70 |
+
if w > max_size:
|
71 |
+
h = int(h * max_size / w)
|
72 |
+
w = max_size
|
73 |
+
|
74 |
+
if h != img.shape[0] or w != img.shape[1]:
|
75 |
+
img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
76 |
+
|
77 |
+
if enhance_face:
|
78 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=only_face, paste_back=True)
|
79 |
+
else:
|
80 |
+
output, _ = upsampler.enhance(img, outscale=scale)
|
81 |
+
|
82 |
+
h, w = img.shape[0:2]
|
83 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
84 |
+
if keep_size:
|
85 |
+
output = cv2.resize(output, (w, h), interpolation=interpolation)
|
86 |
+
elif scale != 2:
|
87 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
88 |
+
|
89 |
+
pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB))
|
90 |
+
|
91 |
+
return pil_output
|
inversion_run_base.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from diffusers import (
|
4 |
+
DDPMScheduler,
|
5 |
+
StableDiffusionXLImg2ImgPipeline,
|
6 |
+
)
|
7 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import retrieve_timesteps, retrieve_latents
|
8 |
+
from PIL import Image
|
9 |
+
from inversion_utils import get_ddpm_inversion_scheduler, create_xts
|
10 |
+
from config import get_config, get_num_steps_actual
|
11 |
+
from functools import partial
|
12 |
+
from compel import Compel, ReturnedEmbeddingsType
|
13 |
+
|
14 |
+
class Object(object):
|
15 |
+
pass
|
16 |
+
|
17 |
+
args = Object()
|
18 |
+
args.images_paths = None
|
19 |
+
args.images_folder = None
|
20 |
+
args.force_use_cpu = False
|
21 |
+
args.folder_name = 'test_measure_time'
|
22 |
+
args.config_from_file = 'run_configs/noise_shift_guidance_1_5.yaml'
|
23 |
+
args.save_intermediate_results = False
|
24 |
+
args.batch_size = None
|
25 |
+
args.skip_p_to_p = True
|
26 |
+
args.only_p_to_p = False
|
27 |
+
args.fp16 = False
|
28 |
+
args.prompts_file = 'dataset_measure_time/dataset.json'
|
29 |
+
args.images_in_prompts_file = None
|
30 |
+
args.seed = 986
|
31 |
+
args.time_measure_n = 1
|
32 |
+
|
33 |
+
|
34 |
+
assert (
|
35 |
+
args.batch_size is None or args.save_intermediate_results is False
|
36 |
+
), "save_intermediate_results is not implemented for batch_size > 1"
|
37 |
+
|
38 |
+
generator = None
|
39 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
+
|
41 |
+
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
42 |
+
# BASE_MODEL = "stabilityai/sdxl-turbo"
|
43 |
+
|
44 |
+
|
45 |
+
pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
46 |
+
BASE_MODEL,
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
variant="fp16",
|
49 |
+
use_safetensors=True,
|
50 |
+
)
|
51 |
+
pipeline = pipeline.to(device)
|
52 |
+
|
53 |
+
pipeline.scheduler = DDPMScheduler.from_pretrained(
|
54 |
+
BASE_MODEL,
|
55 |
+
subfolder="scheduler",
|
56 |
+
)
|
57 |
+
|
58 |
+
config = get_config(args)
|
59 |
+
|
60 |
+
compel_proc = Compel(
|
61 |
+
tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
|
62 |
+
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
|
63 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
64 |
+
requires_pooled=[False, True]
|
65 |
+
)
|
66 |
+
|
67 |
+
def run(
|
68 |
+
input_image:Image,
|
69 |
+
src_prompt:str,
|
70 |
+
tgt_prompt:str,
|
71 |
+
generate_size:int,
|
72 |
+
seed:int,
|
73 |
+
w1:float,
|
74 |
+
w2:float,
|
75 |
+
num_steps:int,
|
76 |
+
start_step:int,
|
77 |
+
guidance_scale:float,
|
78 |
+
):
|
79 |
+
generator = torch.Generator().manual_seed(seed)
|
80 |
+
|
81 |
+
config.num_steps_inversion = num_steps
|
82 |
+
config.step_start = start_step
|
83 |
+
num_steps_actual = get_num_steps_actual(config)
|
84 |
+
|
85 |
+
|
86 |
+
num_steps_inversion = config.num_steps_inversion
|
87 |
+
denoising_start = (num_steps_inversion - num_steps_actual) / num_steps_inversion
|
88 |
+
print(f"-------->num_steps_inversion: {num_steps_inversion} num_steps_actual: {num_steps_actual} denoising_start: {denoising_start}")
|
89 |
+
|
90 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
91 |
+
pipeline.scheduler, num_steps_inversion, device, None
|
92 |
+
)
|
93 |
+
timesteps, num_inference_steps = pipeline.get_timesteps(
|
94 |
+
num_inference_steps=num_inference_steps,
|
95 |
+
denoising_start=denoising_start,
|
96 |
+
strength=0,
|
97 |
+
device=device,
|
98 |
+
)
|
99 |
+
timesteps = timesteps.type(torch.int64)
|
100 |
+
|
101 |
+
timesteps = [torch.tensor(t) for t in timesteps.tolist()]
|
102 |
+
timesteps_len = len(timesteps)
|
103 |
+
config.step_start = start_step + num_steps_actual - timesteps_len
|
104 |
+
num_steps_actual = timesteps_len
|
105 |
+
config.max_norm_zs = [-1] * (num_steps_actual - 1) + [15.5]
|
106 |
+
print(f"-------->num_steps_inversion: {num_steps_inversion} num_steps_actual: {num_steps_actual} step_start: {config.step_start}")
|
107 |
+
print(f"-------->timesteps len: {len(timesteps)} max_norm_zs len: {len(config.max_norm_zs)}")
|
108 |
+
pipeline.__call__ = partial(
|
109 |
+
pipeline.__call__,
|
110 |
+
num_inference_steps=num_steps_inversion,
|
111 |
+
guidance_scale=guidance_scale,
|
112 |
+
generator=generator,
|
113 |
+
denoising_start=denoising_start,
|
114 |
+
strength=0,
|
115 |
+
)
|
116 |
+
|
117 |
+
x_0_image = input_image
|
118 |
+
x_0 = encode_image(x_0_image, pipeline)
|
119 |
+
x_ts = create_xts(1, None, 0, generator, pipeline.scheduler, timesteps, x_0, no_add_noise=False)
|
120 |
+
x_ts = [xt.to(dtype=torch.float16) for xt in x_ts]
|
121 |
+
latents = [x_ts[0]]
|
122 |
+
x_ts_c_hat = [None]
|
123 |
+
config.ws1 = [w1] * num_steps_actual
|
124 |
+
config.ws2 = [w2] * num_steps_actual
|
125 |
+
pipeline.scheduler = get_ddpm_inversion_scheduler(
|
126 |
+
pipeline.scheduler,
|
127 |
+
config.step_function,
|
128 |
+
config,
|
129 |
+
timesteps,
|
130 |
+
config.save_timesteps,
|
131 |
+
latents,
|
132 |
+
x_ts,
|
133 |
+
x_ts_c_hat,
|
134 |
+
args.save_intermediate_results,
|
135 |
+
pipeline,
|
136 |
+
x_0,
|
137 |
+
v1s_images := [],
|
138 |
+
v2s_images := [],
|
139 |
+
deltas_images := [],
|
140 |
+
v1_x0s := [],
|
141 |
+
v2_x0s := [],
|
142 |
+
deltas_x0s := [],
|
143 |
+
"res12",
|
144 |
+
image_name="im_name",
|
145 |
+
time_measure_n=args.time_measure_n,
|
146 |
+
)
|
147 |
+
latent = latents[0].expand(3, -1, -1, -1)
|
148 |
+
prompt = [src_prompt, src_prompt, tgt_prompt]
|
149 |
+
conditioning, pooled = compel_proc(prompt)
|
150 |
+
image = pipeline.__call__(
|
151 |
+
image=latent,
|
152 |
+
prompt_embeds=conditioning,
|
153 |
+
pooled_prompt_embeds=pooled,
|
154 |
+
eta=1,
|
155 |
+
).images
|
156 |
+
return image[2]
|
157 |
+
|
158 |
+
def encode_image(image, pipe):
|
159 |
+
image = pipe.image_processor.preprocess(image)
|
160 |
+
originDtype = pipe.dtype
|
161 |
+
image = image.to(device=device, dtype=originDtype)
|
162 |
+
|
163 |
+
if pipe.vae.config.force_upcast:
|
164 |
+
image = image.float()
|
165 |
+
pipe.vae.to(dtype=torch.float32)
|
166 |
+
|
167 |
+
if isinstance(generator, list):
|
168 |
+
init_latents = [
|
169 |
+
retrieve_latents(pipe.vae.encode(image[i : i + 1]), generator=generator[i])
|
170 |
+
for i in range(1)
|
171 |
+
]
|
172 |
+
init_latents = torch.cat(init_latents, dim=0)
|
173 |
+
else:
|
174 |
+
init_latents = retrieve_latents(pipe.vae.encode(image), generator=generator)
|
175 |
+
|
176 |
+
if pipe.vae.config.force_upcast:
|
177 |
+
pipe.vae.to(originDtype)
|
178 |
+
|
179 |
+
init_latents = init_latents.to(originDtype)
|
180 |
+
init_latents = pipe.vae.config.scaling_factor * init_latents
|
181 |
+
|
182 |
+
return init_latents.to(dtype=torch.float16)
|
183 |
+
|
184 |
+
def get_timesteps(pipe, num_inference_steps, strength, device, denoising_start=None):
|
185 |
+
# get the original timestep using init_timestep
|
186 |
+
if denoising_start is None:
|
187 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
188 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
189 |
+
else:
|
190 |
+
t_start = 0
|
191 |
+
|
192 |
+
timesteps = pipe.scheduler.timesteps[t_start * pipe.scheduler.order :]
|
193 |
+
|
194 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
195 |
+
# that is, strength is determined by the denoising_start instead.
|
196 |
+
if denoising_start is not None:
|
197 |
+
discrete_timestep_cutoff = int(
|
198 |
+
round(
|
199 |
+
pipe.scheduler.config.num_train_timesteps
|
200 |
+
- (denoising_start * pipe.scheduler.config.num_train_timesteps)
|
201 |
+
)
|
202 |
+
)
|
203 |
+
|
204 |
+
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
205 |
+
if pipe.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
206 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
207 |
+
# because `num_inference_steps` might be even given that every timestep
|
208 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
209 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
210 |
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
211 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
212 |
+
num_inference_steps = num_inference_steps + 1
|
213 |
+
|
214 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
215 |
+
timesteps = timesteps[-num_inference_steps:]
|
216 |
+
return timesteps, num_inference_steps
|
217 |
+
|
218 |
+
return timesteps, num_inference_steps - t_start
|
inversion_utils.py
ADDED
@@ -0,0 +1,794 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
import PIL
|
4 |
+
|
5 |
+
from typing import List, Optional, Union
|
6 |
+
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
|
7 |
+
from PIL import Image
|
8 |
+
from diffusers.utils import logging
|
9 |
+
|
10 |
+
VECTOR_DATA_FOLDER = "vector_data"
|
11 |
+
VECTOR_DATA_DICT = "vector_data"
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
def get_ddpm_inversion_scheduler(
|
16 |
+
scheduler,
|
17 |
+
step_function,
|
18 |
+
config,
|
19 |
+
timesteps,
|
20 |
+
save_timesteps,
|
21 |
+
latents,
|
22 |
+
x_ts,
|
23 |
+
x_ts_c_hat,
|
24 |
+
save_intermediate_results,
|
25 |
+
pipe,
|
26 |
+
x_0,
|
27 |
+
v1s_images,
|
28 |
+
v2s_images,
|
29 |
+
deltas_images,
|
30 |
+
v1_x0s,
|
31 |
+
v2_x0s,
|
32 |
+
deltas_x0s,
|
33 |
+
folder_name,
|
34 |
+
image_name,
|
35 |
+
time_measure_n,
|
36 |
+
):
|
37 |
+
def step(
|
38 |
+
model_output: torch.FloatTensor,
|
39 |
+
timestep: int,
|
40 |
+
sample: torch.FloatTensor,
|
41 |
+
eta: float = 0.0,
|
42 |
+
use_clipped_model_output: bool = False,
|
43 |
+
generator=None,
|
44 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
45 |
+
return_dict: bool = True,
|
46 |
+
):
|
47 |
+
# if scheduler.is_save:
|
48 |
+
# start = timer()
|
49 |
+
res_inv = step_save_latents(
|
50 |
+
scheduler,
|
51 |
+
model_output[:1, :, :, :],
|
52 |
+
timestep,
|
53 |
+
sample[:1, :, :, :],
|
54 |
+
eta,
|
55 |
+
use_clipped_model_output,
|
56 |
+
generator,
|
57 |
+
variance_noise,
|
58 |
+
return_dict,
|
59 |
+
)
|
60 |
+
# end = timer()
|
61 |
+
# print(f"Run Time Inv: {end - start}")
|
62 |
+
|
63 |
+
res_inf = step_use_latents(
|
64 |
+
scheduler,
|
65 |
+
model_output[1:, :, :, :],
|
66 |
+
timestep,
|
67 |
+
sample[1:, :, :, :],
|
68 |
+
eta,
|
69 |
+
use_clipped_model_output,
|
70 |
+
generator,
|
71 |
+
variance_noise,
|
72 |
+
return_dict,
|
73 |
+
)
|
74 |
+
# res = res_inv
|
75 |
+
res = (torch.cat((res_inv[0], res_inf[0]), dim=0),)
|
76 |
+
return res
|
77 |
+
# return res
|
78 |
+
|
79 |
+
scheduler.step_function = step_function
|
80 |
+
scheduler.is_save = True
|
81 |
+
scheduler._timesteps = timesteps
|
82 |
+
scheduler._save_timesteps = save_timesteps if save_timesteps else timesteps
|
83 |
+
scheduler._config = config
|
84 |
+
scheduler.latents = latents
|
85 |
+
scheduler.x_ts = x_ts
|
86 |
+
scheduler.x_ts_c_hat = x_ts_c_hat
|
87 |
+
scheduler.step = step
|
88 |
+
scheduler.save_intermediate_results = save_intermediate_results
|
89 |
+
scheduler.pipe = pipe
|
90 |
+
scheduler.v1s_images = v1s_images
|
91 |
+
scheduler.v2s_images = v2s_images
|
92 |
+
scheduler.deltas_images = deltas_images
|
93 |
+
scheduler.v1_x0s = v1_x0s
|
94 |
+
scheduler.v2_x0s = v2_x0s
|
95 |
+
scheduler.deltas_x0s = deltas_x0s
|
96 |
+
scheduler.clean_step_run = False
|
97 |
+
scheduler.x_0s = create_xts(
|
98 |
+
config.noise_shift_delta,
|
99 |
+
config.noise_timesteps,
|
100 |
+
config.clean_step_timestep,
|
101 |
+
None,
|
102 |
+
pipe.scheduler,
|
103 |
+
timesteps,
|
104 |
+
x_0,
|
105 |
+
no_add_noise=True,
|
106 |
+
)
|
107 |
+
scheduler.folder_name = folder_name
|
108 |
+
scheduler.image_name = image_name
|
109 |
+
scheduler.p_to_p = False
|
110 |
+
scheduler.p_to_p_replace = False
|
111 |
+
scheduler.time_measure_n = time_measure_n
|
112 |
+
return scheduler
|
113 |
+
|
114 |
+
def step_save_latents(
|
115 |
+
self,
|
116 |
+
model_output: torch.FloatTensor,
|
117 |
+
timestep: int,
|
118 |
+
sample: torch.FloatTensor,
|
119 |
+
eta: float = 0.0,
|
120 |
+
use_clipped_model_output: bool = False,
|
121 |
+
generator=None,
|
122 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
123 |
+
return_dict: bool = True,
|
124 |
+
):
|
125 |
+
# print(self._save_timesteps)
|
126 |
+
# timestep_index = map_timpstep_to_index[timestep]
|
127 |
+
# timestep_index = ((self._save_timesteps == timestep).nonzero(as_tuple=True)[0]).item()
|
128 |
+
timestep_index = self._save_timesteps.index(timestep) if not self.clean_step_run else -1
|
129 |
+
next_timestep_index = timestep_index + 1 if not self.clean_step_run else -1
|
130 |
+
u_hat_t = self.step_function(
|
131 |
+
model_output=model_output,
|
132 |
+
timestep=timestep,
|
133 |
+
sample=sample,
|
134 |
+
eta=eta,
|
135 |
+
use_clipped_model_output=use_clipped_model_output,
|
136 |
+
generator=generator,
|
137 |
+
variance_noise=variance_noise,
|
138 |
+
return_dict=False,
|
139 |
+
scheduler=self,
|
140 |
+
)
|
141 |
+
|
142 |
+
x_t_minus_1 = self.x_ts[next_timestep_index]
|
143 |
+
self.x_ts_c_hat.append(u_hat_t)
|
144 |
+
|
145 |
+
z_t = x_t_minus_1 - u_hat_t
|
146 |
+
self.latents.append(z_t)
|
147 |
+
z_t, _ = normalize(z_t, timestep_index, self._config.max_norm_zs)
|
148 |
+
|
149 |
+
x_t_minus_1_predicted = u_hat_t + z_t
|
150 |
+
|
151 |
+
if not return_dict:
|
152 |
+
return (x_t_minus_1_predicted,)
|
153 |
+
|
154 |
+
return DDIMSchedulerOutput(prev_sample=x_t_minus_1, pred_original_sample=None)
|
155 |
+
|
156 |
+
def step_use_latents(
|
157 |
+
self,
|
158 |
+
model_output: torch.FloatTensor,
|
159 |
+
timestep: int,
|
160 |
+
sample: torch.FloatTensor,
|
161 |
+
eta: float = 0.0,
|
162 |
+
use_clipped_model_output: bool = False,
|
163 |
+
generator=None,
|
164 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
165 |
+
return_dict: bool = True,
|
166 |
+
):
|
167 |
+
# timestep_index = ((self._save_timesteps == timestep).nonzero(as_tuple=True)[0]).item()
|
168 |
+
timestep_index = self._timesteps.index(timestep) if not self.clean_step_run else -1
|
169 |
+
next_timestep_index = (
|
170 |
+
timestep_index + 1 if not self.clean_step_run else -1
|
171 |
+
)
|
172 |
+
z_t = self.latents[next_timestep_index] # + 1 because latents[0] is X_T
|
173 |
+
|
174 |
+
_, normalize_coefficient = normalize(
|
175 |
+
z_t[0] if self._config.breakdown == "x_t_hat_c_with_zeros" else z_t,
|
176 |
+
timestep_index,
|
177 |
+
self._config.max_norm_zs,
|
178 |
+
)
|
179 |
+
|
180 |
+
if normalize_coefficient == 0:
|
181 |
+
eta = 0
|
182 |
+
|
183 |
+
# eta = normalize_coefficient
|
184 |
+
|
185 |
+
x_t_hat_c_hat = self.step_function(
|
186 |
+
model_output=model_output,
|
187 |
+
timestep=timestep,
|
188 |
+
sample=sample,
|
189 |
+
eta=eta,
|
190 |
+
use_clipped_model_output=use_clipped_model_output,
|
191 |
+
generator=generator,
|
192 |
+
variance_noise=variance_noise,
|
193 |
+
return_dict=False,
|
194 |
+
scheduler=self,
|
195 |
+
)
|
196 |
+
|
197 |
+
w1 = self._config.ws1[timestep_index]
|
198 |
+
w2 = self._config.ws2[timestep_index]
|
199 |
+
|
200 |
+
x_t_minus_1_exact = self.x_ts[next_timestep_index]
|
201 |
+
x_t_minus_1_exact = x_t_minus_1_exact.expand_as(x_t_hat_c_hat)
|
202 |
+
|
203 |
+
x_t_c_hat: torch.Tensor = self.x_ts_c_hat[next_timestep_index]
|
204 |
+
if self._config.breakdown == "x_t_c_hat":
|
205 |
+
raise NotImplementedError("breakdown x_t_c_hat not implemented yet")
|
206 |
+
|
207 |
+
# x_t_c_hat = x_t_c_hat.expand_as(x_t_hat_c_hat)
|
208 |
+
x_t_c = x_t_c_hat[0].expand_as(x_t_hat_c_hat)
|
209 |
+
|
210 |
+
# if self._config.breakdown == "x_t_c_hat":
|
211 |
+
# v1 = x_t_hat_c_hat - x_t_c_hat
|
212 |
+
# v2 = x_t_c_hat - x_t_c
|
213 |
+
if (
|
214 |
+
self._config.breakdown == "x_t_hat_c"
|
215 |
+
or self._config.breakdown == "x_t_hat_c_with_zeros"
|
216 |
+
):
|
217 |
+
zero_index_reconstruction = 1 if not self.time_measure_n else 0
|
218 |
+
edit_prompts_num = (
|
219 |
+
(model_output.size(0) - zero_index_reconstruction) // 3
|
220 |
+
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p
|
221 |
+
else (model_output.size(0) - zero_index_reconstruction) // 2
|
222 |
+
)
|
223 |
+
x_t_hat_c_indices = (zero_index_reconstruction, edit_prompts_num + zero_index_reconstruction)
|
224 |
+
edit_images_indices = (
|
225 |
+
edit_prompts_num + zero_index_reconstruction,
|
226 |
+
(
|
227 |
+
model_output.size(0)
|
228 |
+
if self._config.breakdown == "x_t_hat_c"
|
229 |
+
else zero_index_reconstruction + 2 * edit_prompts_num
|
230 |
+
),
|
231 |
+
)
|
232 |
+
x_t_hat_c = torch.zeros_like(x_t_hat_c_hat)
|
233 |
+
x_t_hat_c[edit_images_indices[0] : edit_images_indices[1]] = x_t_hat_c_hat[
|
234 |
+
x_t_hat_c_indices[0] : x_t_hat_c_indices[1]
|
235 |
+
]
|
236 |
+
v1 = x_t_hat_c_hat - x_t_hat_c
|
237 |
+
v2 = x_t_hat_c - normalize_coefficient * x_t_c
|
238 |
+
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p:
|
239 |
+
path = os.path.join(
|
240 |
+
self.folder_name,
|
241 |
+
VECTOR_DATA_FOLDER,
|
242 |
+
self.image_name,
|
243 |
+
)
|
244 |
+
if not hasattr(self, VECTOR_DATA_DICT):
|
245 |
+
os.makedirs(path, exist_ok=True)
|
246 |
+
self.vector_data = dict()
|
247 |
+
|
248 |
+
x_t_0 = x_t_c_hat[1]
|
249 |
+
empty_prompt_indices = (1 + 2 * edit_prompts_num, 1 + 3 * edit_prompts_num)
|
250 |
+
x_t_hat_0 = x_t_hat_c_hat[empty_prompt_indices[0] : empty_prompt_indices[1]]
|
251 |
+
|
252 |
+
self.vector_data[timestep.item()] = dict()
|
253 |
+
self.vector_data[timestep.item()]["x_t_hat_c"] = x_t_hat_c[
|
254 |
+
edit_images_indices[0] : edit_images_indices[1]
|
255 |
+
]
|
256 |
+
self.vector_data[timestep.item()]["x_t_hat_0"] = x_t_hat_0
|
257 |
+
self.vector_data[timestep.item()]["x_t_c"] = x_t_c[0].expand_as(x_t_hat_0)
|
258 |
+
self.vector_data[timestep.item()]["x_t_0"] = x_t_0.expand_as(x_t_hat_0)
|
259 |
+
self.vector_data[timestep.item()]["x_t_hat_c_hat"] = x_t_hat_c_hat[
|
260 |
+
edit_images_indices[0] : edit_images_indices[1]
|
261 |
+
]
|
262 |
+
self.vector_data[timestep.item()]["x_t_minus_1_noisy"] = x_t_minus_1_exact[
|
263 |
+
0
|
264 |
+
].expand_as(x_t_hat_0)
|
265 |
+
self.vector_data[timestep.item()]["x_t_minus_1_clean"] = self.x_0s[
|
266 |
+
next_timestep_index
|
267 |
+
].expand_as(x_t_hat_0)
|
268 |
+
|
269 |
+
else: # no breakdown
|
270 |
+
v1 = x_t_hat_c_hat - normalize_coefficient * x_t_c
|
271 |
+
v2 = 0
|
272 |
+
|
273 |
+
if self.save_intermediate_results and not self.p_to_p:
|
274 |
+
delta = v1 + v2
|
275 |
+
v1_plus_x0 = self.x_0s[next_timestep_index] + v1
|
276 |
+
v2_plus_x0 = self.x_0s[next_timestep_index] + v2
|
277 |
+
delta_plus_x0 = self.x_0s[next_timestep_index] + delta
|
278 |
+
|
279 |
+
v1_images = decode_latents(v1, self.pipe)
|
280 |
+
self.v1s_images.append(v1_images)
|
281 |
+
v2_images = (
|
282 |
+
decode_latents(v2, self.pipe)
|
283 |
+
if self._config.breakdown != "no_breakdown"
|
284 |
+
else [PIL.Image.new("RGB", (1, 1))]
|
285 |
+
)
|
286 |
+
self.v2s_images.append(v2_images)
|
287 |
+
delta_images = decode_latents(delta, self.pipe)
|
288 |
+
self.deltas_images.append(delta_images)
|
289 |
+
v1_plus_x0_images = decode_latents(v1_plus_x0, self.pipe)
|
290 |
+
self.v1_x0s.append(v1_plus_x0_images)
|
291 |
+
v2_plus_x0_images = (
|
292 |
+
decode_latents(v2_plus_x0, self.pipe)
|
293 |
+
if self._config.breakdown != "no_breakdown"
|
294 |
+
else [PIL.Image.new("RGB", (1, 1))]
|
295 |
+
)
|
296 |
+
self.v2_x0s.append(v2_plus_x0_images)
|
297 |
+
delta_plus_x0_images = decode_latents(delta_plus_x0, self.pipe)
|
298 |
+
self.deltas_x0s.append(delta_plus_x0_images)
|
299 |
+
|
300 |
+
# print(f"v1 norm: {torch.norm(v1, dim=0).mean()}")
|
301 |
+
# if self._config.breakdown != "no_breakdown":
|
302 |
+
# print(f"v2 norm: {torch.norm(v2, dim=0).mean()}")
|
303 |
+
# print(f"v sum norm: {torch.norm(v1 + v2, dim=0).mean()}")
|
304 |
+
|
305 |
+
x_t_minus_1 = normalize_coefficient * x_t_minus_1_exact + w1 * v1 + w2 * v2
|
306 |
+
|
307 |
+
if (
|
308 |
+
self._config.breakdown == "x_t_hat_c"
|
309 |
+
or self._config.breakdown == "x_t_hat_c_with_zeros"
|
310 |
+
):
|
311 |
+
x_t_minus_1[x_t_hat_c_indices[0] : x_t_hat_c_indices[1]] = x_t_minus_1[
|
312 |
+
edit_images_indices[0] : edit_images_indices[1]
|
313 |
+
] # update x_t_hat_c to be x_t_hat_c_hat
|
314 |
+
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p:
|
315 |
+
x_t_minus_1[empty_prompt_indices[0] : empty_prompt_indices[1]] = (
|
316 |
+
x_t_minus_1[edit_images_indices[0] : edit_images_indices[1]]
|
317 |
+
)
|
318 |
+
self.vector_data[timestep.item()]["x_t_minus_1_edited"] = x_t_minus_1[
|
319 |
+
edit_images_indices[0] : edit_images_indices[1]
|
320 |
+
]
|
321 |
+
if timestep == self._timesteps[-1]:
|
322 |
+
torch.save(
|
323 |
+
self.vector_data,
|
324 |
+
os.path.join(
|
325 |
+
path,
|
326 |
+
f"{VECTOR_DATA_DICT}.pt",
|
327 |
+
),
|
328 |
+
)
|
329 |
+
# p_to_p_force_perfect_reconstruction
|
330 |
+
if not self.time_measure_n:
|
331 |
+
x_t_minus_1[0] = x_t_minus_1_exact[0]
|
332 |
+
|
333 |
+
if not return_dict:
|
334 |
+
return (x_t_minus_1,)
|
335 |
+
|
336 |
+
return DDIMSchedulerOutput(
|
337 |
+
prev_sample=x_t_minus_1,
|
338 |
+
pred_original_sample=None,
|
339 |
+
)
|
340 |
+
|
341 |
+
def create_xts(
|
342 |
+
noise_shift_delta,
|
343 |
+
noise_timesteps,
|
344 |
+
clean_step_timestep,
|
345 |
+
generator,
|
346 |
+
scheduler,
|
347 |
+
timesteps,
|
348 |
+
x_0,
|
349 |
+
no_add_noise=False,
|
350 |
+
):
|
351 |
+
if noise_timesteps is None:
|
352 |
+
noising_delta = noise_shift_delta * (timesteps[0] - timesteps[1])
|
353 |
+
noise_timesteps = [timestep - int(noising_delta) for timestep in timesteps]
|
354 |
+
|
355 |
+
first_x_0_idx = len(noise_timesteps)
|
356 |
+
for i in range(len(noise_timesteps)):
|
357 |
+
if noise_timesteps[i] <= 0:
|
358 |
+
first_x_0_idx = i
|
359 |
+
break
|
360 |
+
|
361 |
+
noise_timesteps = noise_timesteps[:first_x_0_idx]
|
362 |
+
|
363 |
+
x_0_expanded = x_0.expand(len(noise_timesteps), -1, -1, -1)
|
364 |
+
noise = (
|
365 |
+
torch.randn(x_0_expanded.size(), generator=generator, device="cpu").to(
|
366 |
+
x_0.device
|
367 |
+
)
|
368 |
+
if not no_add_noise
|
369 |
+
else torch.zeros_like(x_0_expanded)
|
370 |
+
)
|
371 |
+
x_ts = scheduler.add_noise(
|
372 |
+
x_0_expanded,
|
373 |
+
noise,
|
374 |
+
torch.IntTensor(noise_timesteps),
|
375 |
+
)
|
376 |
+
x_ts = [t.unsqueeze(dim=0) for t in list(x_ts)]
|
377 |
+
x_ts += [x_0] * (len(timesteps) - first_x_0_idx)
|
378 |
+
x_ts += [x_0]
|
379 |
+
if clean_step_timestep > 0:
|
380 |
+
x_ts += [x_0]
|
381 |
+
return x_ts
|
382 |
+
|
383 |
+
def normalize(
|
384 |
+
z_t,
|
385 |
+
i,
|
386 |
+
max_norm_zs,
|
387 |
+
):
|
388 |
+
max_norm = max_norm_zs[i]
|
389 |
+
if max_norm < 0:
|
390 |
+
return z_t, 1
|
391 |
+
|
392 |
+
norm = torch.norm(z_t)
|
393 |
+
if norm < max_norm:
|
394 |
+
return z_t, 1
|
395 |
+
|
396 |
+
coeff = max_norm / norm
|
397 |
+
z_t = z_t * coeff
|
398 |
+
return z_t, coeff
|
399 |
+
|
400 |
+
def decode_latents(latent, pipe):
|
401 |
+
latent_img = pipe.vae.decode(
|
402 |
+
latent / pipe.vae.config.scaling_factor, return_dict=False
|
403 |
+
)[0]
|
404 |
+
return pipe.image_processor.postprocess(latent_img, output_type="pil")
|
405 |
+
|
406 |
+
def deterministic_ddim_step(
|
407 |
+
model_output: torch.FloatTensor,
|
408 |
+
timestep: int,
|
409 |
+
sample: torch.FloatTensor,
|
410 |
+
eta: float = 0.0,
|
411 |
+
use_clipped_model_output: bool = False,
|
412 |
+
generator=None,
|
413 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
414 |
+
return_dict: bool = True,
|
415 |
+
scheduler=None,
|
416 |
+
):
|
417 |
+
|
418 |
+
if scheduler.num_inference_steps is None:
|
419 |
+
raise ValueError(
|
420 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
421 |
+
)
|
422 |
+
|
423 |
+
prev_timestep = (
|
424 |
+
timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
|
425 |
+
)
|
426 |
+
|
427 |
+
# 2. compute alphas, betas
|
428 |
+
alpha_prod_t = scheduler.alphas_cumprod[timestep]
|
429 |
+
alpha_prod_t_prev = (
|
430 |
+
scheduler.alphas_cumprod[prev_timestep]
|
431 |
+
if prev_timestep >= 0
|
432 |
+
else scheduler.final_alpha_cumprod
|
433 |
+
)
|
434 |
+
|
435 |
+
beta_prod_t = 1 - alpha_prod_t
|
436 |
+
|
437 |
+
if scheduler.config.prediction_type == "epsilon":
|
438 |
+
pred_original_sample = (
|
439 |
+
sample - beta_prod_t ** (0.5) * model_output
|
440 |
+
) / alpha_prod_t ** (0.5)
|
441 |
+
pred_epsilon = model_output
|
442 |
+
elif scheduler.config.prediction_type == "sample":
|
443 |
+
pred_original_sample = model_output
|
444 |
+
pred_epsilon = (
|
445 |
+
sample - alpha_prod_t ** (0.5) * pred_original_sample
|
446 |
+
) / beta_prod_t ** (0.5)
|
447 |
+
elif scheduler.config.prediction_type == "v_prediction":
|
448 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (
|
449 |
+
beta_prod_t**0.5
|
450 |
+
) * model_output
|
451 |
+
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
452 |
+
else:
|
453 |
+
raise ValueError(
|
454 |
+
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
455 |
+
" `v_prediction`"
|
456 |
+
)
|
457 |
+
|
458 |
+
# 4. Clip or threshold "predicted x_0"
|
459 |
+
if scheduler.config.thresholding:
|
460 |
+
pred_original_sample = scheduler._threshold_sample(pred_original_sample)
|
461 |
+
elif scheduler.config.clip_sample:
|
462 |
+
pred_original_sample = pred_original_sample.clamp(
|
463 |
+
-scheduler.config.clip_sample_range,
|
464 |
+
scheduler.config.clip_sample_range,
|
465 |
+
)
|
466 |
+
|
467 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
468 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
469 |
+
variance = scheduler._get_variance(timestep, prev_timestep)
|
470 |
+
std_dev_t = eta * variance ** (0.5)
|
471 |
+
|
472 |
+
if use_clipped_model_output:
|
473 |
+
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
|
474 |
+
pred_epsilon = (
|
475 |
+
sample - alpha_prod_t ** (0.5) * pred_original_sample
|
476 |
+
) / beta_prod_t ** (0.5)
|
477 |
+
|
478 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
479 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (
|
480 |
+
0.5
|
481 |
+
) * pred_epsilon
|
482 |
+
|
483 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
484 |
+
prev_sample = (
|
485 |
+
alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
486 |
+
)
|
487 |
+
return prev_sample
|
488 |
+
|
489 |
+
|
490 |
+
def deterministic_euler_step(
|
491 |
+
model_output: torch.FloatTensor,
|
492 |
+
timestep: Union[float, torch.FloatTensor],
|
493 |
+
sample: torch.FloatTensor,
|
494 |
+
eta,
|
495 |
+
use_clipped_model_output,
|
496 |
+
generator,
|
497 |
+
variance_noise,
|
498 |
+
return_dict,
|
499 |
+
scheduler,
|
500 |
+
):
|
501 |
+
"""
|
502 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
503 |
+
process from the learned model outputs (most often the predicted noise).
|
504 |
+
|
505 |
+
Args:
|
506 |
+
model_output (`torch.FloatTensor`):
|
507 |
+
The direct output from learned diffusion model.
|
508 |
+
timestep (`float`):
|
509 |
+
The current discrete timestep in the diffusion chain.
|
510 |
+
sample (`torch.FloatTensor`):
|
511 |
+
A current instance of a sample created by the diffusion process.
|
512 |
+
generator (`torch.Generator`, *optional*):
|
513 |
+
A random number generator.
|
514 |
+
return_dict (`bool`):
|
515 |
+
Whether or not to return a
|
516 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
517 |
+
|
518 |
+
Returns:
|
519 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
520 |
+
If return_dict is `True`,
|
521 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
522 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
523 |
+
|
524 |
+
"""
|
525 |
+
|
526 |
+
if (
|
527 |
+
isinstance(timestep, int)
|
528 |
+
or isinstance(timestep, torch.IntTensor)
|
529 |
+
or isinstance(timestep, torch.LongTensor)
|
530 |
+
):
|
531 |
+
raise ValueError(
|
532 |
+
(
|
533 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
534 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
535 |
+
" one of the `scheduler.timesteps` as a timestep."
|
536 |
+
),
|
537 |
+
)
|
538 |
+
|
539 |
+
if scheduler.step_index is None:
|
540 |
+
scheduler._init_step_index(timestep)
|
541 |
+
|
542 |
+
sigma = scheduler.sigmas[scheduler.step_index]
|
543 |
+
|
544 |
+
# Upcast to avoid precision issues when computing prev_sample
|
545 |
+
sample = sample.to(torch.float32)
|
546 |
+
|
547 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
548 |
+
if scheduler.config.prediction_type == "epsilon":
|
549 |
+
pred_original_sample = sample - sigma * model_output
|
550 |
+
elif scheduler.config.prediction_type == "v_prediction":
|
551 |
+
# * c_out + input * c_skip
|
552 |
+
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (
|
553 |
+
sample / (sigma**2 + 1)
|
554 |
+
)
|
555 |
+
elif scheduler.config.prediction_type == "sample":
|
556 |
+
raise NotImplementedError("prediction_type not implemented yet: sample")
|
557 |
+
else:
|
558 |
+
raise ValueError(
|
559 |
+
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
560 |
+
)
|
561 |
+
|
562 |
+
sigma_from = scheduler.sigmas[scheduler.step_index]
|
563 |
+
sigma_to = scheduler.sigmas[scheduler.step_index + 1]
|
564 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
565 |
+
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
566 |
+
|
567 |
+
# 2. Convert to an ODE derivative
|
568 |
+
derivative = (sample - pred_original_sample) / sigma
|
569 |
+
|
570 |
+
dt = sigma_down - sigma
|
571 |
+
|
572 |
+
prev_sample = sample + derivative * dt
|
573 |
+
|
574 |
+
# Cast sample back to model compatible dtype
|
575 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
576 |
+
|
577 |
+
# upon completion increase step index by one
|
578 |
+
scheduler._step_index += 1
|
579 |
+
|
580 |
+
return prev_sample
|
581 |
+
|
582 |
+
|
583 |
+
def deterministic_non_ancestral_euler_step(
|
584 |
+
model_output: torch.FloatTensor,
|
585 |
+
timestep: Union[float, torch.FloatTensor],
|
586 |
+
sample: torch.FloatTensor,
|
587 |
+
eta: float = 0.0,
|
588 |
+
use_clipped_model_output: bool = False,
|
589 |
+
s_churn: float = 0.0,
|
590 |
+
s_tmin: float = 0.0,
|
591 |
+
s_tmax: float = float("inf"),
|
592 |
+
s_noise: float = 1.0,
|
593 |
+
generator: Optional[torch.Generator] = None,
|
594 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
595 |
+
return_dict: bool = True,
|
596 |
+
scheduler=None,
|
597 |
+
):
|
598 |
+
"""
|
599 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
600 |
+
process from the learned model outputs (most often the predicted noise).
|
601 |
+
|
602 |
+
Args:
|
603 |
+
model_output (`torch.FloatTensor`):
|
604 |
+
The direct output from learned diffusion model.
|
605 |
+
timestep (`float`):
|
606 |
+
The current discrete timestep in the diffusion chain.
|
607 |
+
sample (`torch.FloatTensor`):
|
608 |
+
A current instance of a sample created by the diffusion process.
|
609 |
+
s_churn (`float`):
|
610 |
+
s_tmin (`float`):
|
611 |
+
s_tmax (`float`):
|
612 |
+
s_noise (`float`, defaults to 1.0):
|
613 |
+
Scaling factor for noise added to the sample.
|
614 |
+
generator (`torch.Generator`, *optional*):
|
615 |
+
A random number generator.
|
616 |
+
return_dict (`bool`):
|
617 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
618 |
+
tuple.
|
619 |
+
|
620 |
+
Returns:
|
621 |
+
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
622 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
623 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
624 |
+
"""
|
625 |
+
|
626 |
+
if (
|
627 |
+
isinstance(timestep, int)
|
628 |
+
or isinstance(timestep, torch.IntTensor)
|
629 |
+
or isinstance(timestep, torch.LongTensor)
|
630 |
+
):
|
631 |
+
raise ValueError(
|
632 |
+
(
|
633 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
634 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
635 |
+
" one of the `scheduler.timesteps` as a timestep."
|
636 |
+
),
|
637 |
+
)
|
638 |
+
|
639 |
+
if not scheduler.is_scale_input_called:
|
640 |
+
logger.warning(
|
641 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
642 |
+
"See `StableDiffusionPipeline` for a usage example."
|
643 |
+
)
|
644 |
+
|
645 |
+
if scheduler.step_index is None:
|
646 |
+
scheduler._init_step_index(timestep)
|
647 |
+
|
648 |
+
# Upcast to avoid precision issues when computing prev_sample
|
649 |
+
sample = sample.to(torch.float32)
|
650 |
+
|
651 |
+
sigma = scheduler.sigmas[scheduler.step_index]
|
652 |
+
|
653 |
+
gamma = (
|
654 |
+
min(s_churn / (len(scheduler.sigmas) - 1), 2**0.5 - 1)
|
655 |
+
if s_tmin <= sigma <= s_tmax
|
656 |
+
else 0.0
|
657 |
+
)
|
658 |
+
|
659 |
+
sigma_hat = sigma * (gamma + 1)
|
660 |
+
|
661 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
662 |
+
# NOTE: "original_sample" should not be an expected prediction_type but is left in for
|
663 |
+
# backwards compatibility
|
664 |
+
if (
|
665 |
+
scheduler.config.prediction_type == "original_sample"
|
666 |
+
or scheduler.config.prediction_type == "sample"
|
667 |
+
):
|
668 |
+
pred_original_sample = model_output
|
669 |
+
elif scheduler.config.prediction_type == "epsilon":
|
670 |
+
pred_original_sample = sample - sigma_hat * model_output
|
671 |
+
elif scheduler.config.prediction_type == "v_prediction":
|
672 |
+
# denoised = model_output * c_out + input * c_skip
|
673 |
+
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (
|
674 |
+
sample / (sigma**2 + 1)
|
675 |
+
)
|
676 |
+
else:
|
677 |
+
raise ValueError(
|
678 |
+
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
679 |
+
)
|
680 |
+
|
681 |
+
# 2. Convert to an ODE derivative
|
682 |
+
derivative = (sample - pred_original_sample) / sigma_hat
|
683 |
+
|
684 |
+
dt = scheduler.sigmas[scheduler.step_index + 1] - sigma_hat
|
685 |
+
|
686 |
+
prev_sample = sample + derivative * dt
|
687 |
+
|
688 |
+
# Cast sample back to model compatible dtype
|
689 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
690 |
+
|
691 |
+
# upon completion increase step index by one
|
692 |
+
scheduler._step_index += 1
|
693 |
+
|
694 |
+
return prev_sample
|
695 |
+
|
696 |
+
|
697 |
+
def deterministic_ddpm_step(
|
698 |
+
model_output: torch.FloatTensor,
|
699 |
+
timestep: Union[float, torch.FloatTensor],
|
700 |
+
sample: torch.FloatTensor,
|
701 |
+
eta,
|
702 |
+
use_clipped_model_output,
|
703 |
+
generator,
|
704 |
+
variance_noise,
|
705 |
+
return_dict,
|
706 |
+
scheduler,
|
707 |
+
):
|
708 |
+
"""
|
709 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
710 |
+
process from the learned model outputs (most often the predicted noise).
|
711 |
+
|
712 |
+
Args:
|
713 |
+
model_output (`torch.FloatTensor`):
|
714 |
+
The direct output from learned diffusion model.
|
715 |
+
timestep (`float`):
|
716 |
+
The current discrete timestep in the diffusion chain.
|
717 |
+
sample (`torch.FloatTensor`):
|
718 |
+
A current instance of a sample created by the diffusion process.
|
719 |
+
generator (`torch.Generator`, *optional*):
|
720 |
+
A random number generator.
|
721 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
722 |
+
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
|
723 |
+
|
724 |
+
Returns:
|
725 |
+
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
|
726 |
+
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
|
727 |
+
tuple is returned where the first element is the sample tensor.
|
728 |
+
|
729 |
+
"""
|
730 |
+
t = timestep
|
731 |
+
|
732 |
+
prev_t = scheduler.previous_timestep(t)
|
733 |
+
|
734 |
+
if model_output.shape[1] == sample.shape[1] * 2 and scheduler.variance_type in [
|
735 |
+
"learned",
|
736 |
+
"learned_range",
|
737 |
+
]:
|
738 |
+
model_output, predicted_variance = torch.split(
|
739 |
+
model_output, sample.shape[1], dim=1
|
740 |
+
)
|
741 |
+
else:
|
742 |
+
predicted_variance = None
|
743 |
+
|
744 |
+
# 1. compute alphas, betas
|
745 |
+
alpha_prod_t = scheduler.alphas_cumprod[t]
|
746 |
+
alpha_prod_t_prev = (
|
747 |
+
scheduler.alphas_cumprod[prev_t] if prev_t >= 0 else scheduler.one
|
748 |
+
)
|
749 |
+
beta_prod_t = 1 - alpha_prod_t
|
750 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
751 |
+
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
|
752 |
+
current_beta_t = 1 - current_alpha_t
|
753 |
+
|
754 |
+
# 2. compute predicted original sample from predicted noise also called
|
755 |
+
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
756 |
+
if scheduler.config.prediction_type == "epsilon":
|
757 |
+
pred_original_sample = (
|
758 |
+
sample - beta_prod_t ** (0.5) * model_output
|
759 |
+
) / alpha_prod_t ** (0.5)
|
760 |
+
elif scheduler.config.prediction_type == "sample":
|
761 |
+
pred_original_sample = model_output
|
762 |
+
elif scheduler.config.prediction_type == "v_prediction":
|
763 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (
|
764 |
+
beta_prod_t**0.5
|
765 |
+
) * model_output
|
766 |
+
else:
|
767 |
+
raise ValueError(
|
768 |
+
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample` or"
|
769 |
+
" `v_prediction` for the DDPMScheduler."
|
770 |
+
)
|
771 |
+
|
772 |
+
# 3. Clip or threshold "predicted x_0"
|
773 |
+
if scheduler.config.thresholding:
|
774 |
+
pred_original_sample = scheduler._threshold_sample(pred_original_sample)
|
775 |
+
elif scheduler.config.clip_sample:
|
776 |
+
pred_original_sample = pred_original_sample.clamp(
|
777 |
+
-scheduler.config.clip_sample_range, scheduler.config.clip_sample_range
|
778 |
+
)
|
779 |
+
|
780 |
+
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
781 |
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
782 |
+
pred_original_sample_coeff = (
|
783 |
+
alpha_prod_t_prev ** (0.5) * current_beta_t
|
784 |
+
) / beta_prod_t
|
785 |
+
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
|
786 |
+
|
787 |
+
# 5. Compute predicted previous sample µ_t
|
788 |
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
789 |
+
pred_prev_sample = (
|
790 |
+
pred_original_sample_coeff * pred_original_sample
|
791 |
+
+ current_sample_coeff * sample
|
792 |
+
)
|
793 |
+
|
794 |
+
return pred_prev_sample
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ml-collections
|
2 |
+
gradio
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
diffusers
|
6 |
+
transformers
|
7 |
+
accelerate
|
8 |
+
mediapipe
|
9 |
+
spaces
|
10 |
+
sentencepiece
|
11 |
+
compel
|
12 |
+
gfpgan
|
13 |
+
git+https://github.com/XPixelGroup/BasicSR@master
|
14 |
+
facexlib
|
15 |
+
realesrgan
|
16 |
+
controlnet_aux
|
17 |
+
peft
|
run_configs/noise_shift_3_steps.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
breakdown: "x_t_hat_c"
|
2 |
+
cross_r: 0.9
|
3 |
+
eta_reconstruct: 1
|
4 |
+
eta_retrieve: 1
|
5 |
+
max_norm_zs: [-1, -1, 15.5]
|
6 |
+
model: "stabilityai/sdxl-turbo"
|
7 |
+
noise_shift_delta: 1
|
8 |
+
noise_timesteps: [599, 299, 0]
|
9 |
+
timesteps: [799, 499, 199]
|
10 |
+
num_steps_inversion: 5
|
11 |
+
step_start: 1
|
12 |
+
real_cfg_scale: 0
|
13 |
+
real_cfg_scale_save: 0
|
14 |
+
scheduler_type: "ddpm"
|
15 |
+
seed: 2
|
16 |
+
self_r: 0.5
|
17 |
+
ws1: 1.5
|
18 |
+
ws2: 1
|
19 |
+
clean_step_timestep: 0
|
run_configs/noise_shift_guidance_1_5.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
breakdown: "x_t_hat_c"
|
2 |
+
cross_r: 0.9
|
3 |
+
eta: 1
|
4 |
+
max_norm_zs: [-1, -1, -1, 15.5]
|
5 |
+
model: ""
|
6 |
+
noise_shift_delta: 1
|
7 |
+
noise_timesteps: null
|
8 |
+
num_steps_inversion: 20
|
9 |
+
step_start: 5
|
10 |
+
real_cfg_scale: 0
|
11 |
+
real_cfg_scale_save: 0
|
12 |
+
scheduler_type: "ddpm"
|
13 |
+
seed: 2
|
14 |
+
self_r: 0.5
|
15 |
+
timesteps: null
|
16 |
+
ws1: 1.5
|
17 |
+
ws2: 1
|
18 |
+
clean_step_timestep: 0
|
segment_utils.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import mediapipe as mp
|
3 |
+
import uuid
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
from mediapipe.tasks import python
|
7 |
+
from mediapipe.tasks.python import vision
|
8 |
+
from scipy.ndimage import binary_dilation
|
9 |
+
from croper import Croper
|
10 |
+
|
11 |
+
segment_model = "checkpoints/selfie_multiclass_256x256.tflite"
|
12 |
+
base_options = python.BaseOptions(model_asset_path=segment_model)
|
13 |
+
options = vision.ImageSegmenterOptions(base_options=base_options,output_category_mask=True)
|
14 |
+
segmenter = vision.ImageSegmenter.create_from_options(options)
|
15 |
+
|
16 |
+
def restore_result(croper, category, generated_image):
|
17 |
+
square_length = croper.square_length
|
18 |
+
generated_image = generated_image.resize((square_length, square_length))
|
19 |
+
|
20 |
+
cropped_generated_image = generated_image.crop((croper.square_start_x, croper.square_start_y, croper.square_end_x, croper.square_end_y))
|
21 |
+
cropped_square_mask_image = get_restore_mask_image(croper, category, cropped_generated_image)
|
22 |
+
|
23 |
+
restored_image = croper.input_image.copy()
|
24 |
+
restored_image.paste(cropped_generated_image, (croper.origin_start_x, croper.origin_start_y), cropped_square_mask_image)
|
25 |
+
|
26 |
+
extension = 'png'
|
27 |
+
# if restored_image.mode == 'RGBA':
|
28 |
+
# extension = 'png'
|
29 |
+
# else:
|
30 |
+
# extension = 'jpg'
|
31 |
+
|
32 |
+
path = f"output/{uuid.uuid4()}.{extension}"
|
33 |
+
restored_image.save(path, quality=95)
|
34 |
+
|
35 |
+
return restored_image, path
|
36 |
+
|
37 |
+
def segment_image(input_image, category, input_size, mask_expansion, mask_dilation):
|
38 |
+
mask_size = int(input_size)
|
39 |
+
mask_expansion = int(mask_expansion)
|
40 |
+
|
41 |
+
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(input_image))
|
42 |
+
segmentation_result = segmenter.segment(image)
|
43 |
+
category_mask = segmentation_result.category_mask
|
44 |
+
category_mask_np = category_mask.numpy_view()
|
45 |
+
|
46 |
+
if category == "hair":
|
47 |
+
target_mask = get_hair_mask(category_mask_np, mask_dilation)
|
48 |
+
elif category == "clothes":
|
49 |
+
target_mask = get_clothes_mask(category_mask_np, mask_dilation)
|
50 |
+
elif category == "face":
|
51 |
+
target_mask = get_face_mask(category_mask_np, mask_dilation)
|
52 |
+
else:
|
53 |
+
target_mask = get_face_mask(category_mask_np, mask_dilation)
|
54 |
+
|
55 |
+
croper = Croper(input_image, target_mask, mask_size, mask_expansion)
|
56 |
+
croper.corp_mask_image()
|
57 |
+
origin_area_image = croper.resized_square_image
|
58 |
+
|
59 |
+
return origin_area_image, croper
|
60 |
+
|
61 |
+
def get_face_mask(category_mask_np, dilation=1):
|
62 |
+
face_skin_mask = category_mask_np == 3
|
63 |
+
if dilation > 0:
|
64 |
+
face_skin_mask = binary_dilation(face_skin_mask, iterations=dilation)
|
65 |
+
|
66 |
+
return face_skin_mask
|
67 |
+
|
68 |
+
def get_clothes_mask(category_mask_np, dilation=1):
|
69 |
+
body_skin_mask = category_mask_np == 2
|
70 |
+
clothes_mask = category_mask_np == 4
|
71 |
+
combined_mask = np.logical_or(body_skin_mask, clothes_mask)
|
72 |
+
combined_mask = binary_dilation(combined_mask, iterations=4)
|
73 |
+
if dilation > 0:
|
74 |
+
combined_mask = binary_dilation(combined_mask, iterations=dilation)
|
75 |
+
return combined_mask
|
76 |
+
|
77 |
+
def get_hair_mask(category_mask_np, dilation=1):
|
78 |
+
hair_mask = category_mask_np == 1
|
79 |
+
if dilation > 0:
|
80 |
+
hair_mask = binary_dilation(hair_mask, iterations=dilation)
|
81 |
+
return hair_mask
|
82 |
+
|
83 |
+
def get_restore_mask_image(croper, category, generated_image):
|
84 |
+
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(generated_image))
|
85 |
+
segmentation_result = segmenter.segment(image)
|
86 |
+
category_mask = segmentation_result.category_mask
|
87 |
+
category_mask_np = category_mask.numpy_view()
|
88 |
+
|
89 |
+
if category == "hair":
|
90 |
+
target_mask = get_hair_mask(category_mask_np, 0)
|
91 |
+
elif category == "clothes":
|
92 |
+
target_mask = get_clothes_mask(category_mask_np, 0)
|
93 |
+
elif category == "face":
|
94 |
+
target_mask = get_face_mask(category_mask_np, 0)
|
95 |
+
|
96 |
+
combined_mask = np.logical_or(target_mask, croper.corp_mask)
|
97 |
+
mask_image = Image.fromarray((combined_mask * 255).astype(np.uint8))
|
98 |
+
return mask_image
|