Spaces:
Sleeping
Sleeping
cleaned up notebooks
Browse files- EnergyLSTM/EDA_lstm_energy.ipynb +12 -180
- EnergyLSTM/lstm_energy.ipynb +160 -108
EnergyLSTM/EDA_lstm_energy.ipynb
CHANGED
@@ -2,13 +2,14 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd \n",
|
10 |
"from datetime import datetime \n",
|
11 |
"from datetime import timedelta\n",
|
|
|
12 |
"import matplotlib.pyplot as plt\n",
|
13 |
"# import seaborn as sns\n",
|
14 |
"import numpy as np\n",
|
@@ -31,7 +32,7 @@
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
-
"execution_count":
|
35 |
"metadata": {},
|
36 |
"outputs": [],
|
37 |
"source": [
|
@@ -50,7 +51,7 @@
|
|
50 |
},
|
51 |
{
|
52 |
"cell_type": "code",
|
53 |
-
"execution_count":
|
54 |
"metadata": {
|
55 |
"vscode": {
|
56 |
"languageId": "ruby"
|
@@ -101,26 +102,6 @@
|
|
101 |
"plt.show()"
|
102 |
]
|
103 |
},
|
104 |
-
{
|
105 |
-
"cell_type": "code",
|
106 |
-
"execution_count": 63,
|
107 |
-
"metadata": {},
|
108 |
-
"outputs": [
|
109 |
-
{
|
110 |
-
"data": {
|
111 |
-
"text/plain": [
|
112 |
-
"[<matplotlib.lines.Line2D at 0x1d98c8cdfd0>]"
|
113 |
-
]
|
114 |
-
},
|
115 |
-
"execution_count": 63,
|
116 |
-
"metadata": {},
|
117 |
-
"output_type": "execute_result"
|
118 |
-
}
|
119 |
-
],
|
120 |
-
"source": [
|
121 |
-
"plt.plot(eed_1h['hvac_N'])"
|
122 |
-
]
|
123 |
-
},
|
124 |
{
|
125 |
"cell_type": "markdown",
|
126 |
"metadata": {},
|
@@ -140,7 +121,7 @@
|
|
140 |
" one = timedelta(hours=1)\n",
|
141 |
" secondTSr = secondTS[::-1].copy()\n",
|
142 |
" firstTSr = firstTS[::-1].copy()\n",
|
143 |
-
" indexr = pd.date_range(start=firstTS.index[0], end=secondTS.index[-1], freq='
|
144 |
" firstTSr.index = indexr[-len(firstTSr):]\n",
|
145 |
" secondTSr.index = indexr[:len(secondTSr)]\n",
|
146 |
" \n",
|
@@ -161,7 +142,7 @@
|
|
161 |
},
|
162 |
{
|
163 |
"cell_type": "code",
|
164 |
-
"execution_count":
|
165 |
"metadata": {},
|
166 |
"outputs": [],
|
167 |
"source": [
|
@@ -195,7 +176,7 @@
|
|
195 |
},
|
196 |
{
|
197 |
"cell_type": "code",
|
198 |
-
"execution_count":
|
199 |
"metadata": {},
|
200 |
"outputs": [],
|
201 |
"source": [
|
@@ -209,7 +190,7 @@
|
|
209 |
" for ii in range(len(dfs)-1):\n",
|
210 |
" seasonal_periods = max(min([len(dfs[ii]), len(dfs[ii+1])]) // 2 - 10, 2)\n",
|
211 |
" \n",
|
212 |
-
" if seasonal_periods >
|
213 |
" seasonal_periods = 24*7\n",
|
214 |
" interpolation = fillgap(dfs[ii][col], dfs[ii+1][col], seasonal_periods)\n",
|
215 |
" else:\n",
|
@@ -225,148 +206,19 @@
|
|
225 |
},
|
226 |
{
|
227 |
"cell_type": "code",
|
228 |
-
"execution_count":
|
229 |
"metadata": {},
|
230 |
-
"outputs": [
|
231 |
-
{
|
232 |
-
"name": "stderr",
|
233 |
-
"output_type": "stream",
|
234 |
-
"text": [
|
235 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
236 |
-
" warnings.warn(\n",
|
237 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
238 |
-
" warnings.warn(\n",
|
239 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
240 |
-
" warnings.warn(\n",
|
241 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
242 |
-
" warnings.warn(\n",
|
243 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
244 |
-
" warnings.warn(\n",
|
245 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
246 |
-
" warnings.warn(\n",
|
247 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
248 |
-
" warnings.warn(\n",
|
249 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
250 |
-
" warnings.warn(\n",
|
251 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
252 |
-
" warnings.warn(\n",
|
253 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
254 |
-
" warnings.warn(\n",
|
255 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
256 |
-
" warnings.warn(\n",
|
257 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
258 |
-
" warnings.warn(\n",
|
259 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
260 |
-
" warnings.warn(\n",
|
261 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
262 |
-
" warnings.warn(\n",
|
263 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
264 |
-
" warnings.warn(\n",
|
265 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
266 |
-
" warnings.warn(\n",
|
267 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
268 |
-
" warnings.warn(\n",
|
269 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
270 |
-
" warnings.warn(\n",
|
271 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
272 |
-
" warnings.warn(\n"
|
273 |
-
]
|
274 |
-
},
|
275 |
-
{
|
276 |
-
"data": {
|
277 |
-
"text/html": [
|
278 |
-
"<div>\n",
|
279 |
-
"<style scoped>\n",
|
280 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
281 |
-
" vertical-align: middle;\n",
|
282 |
-
" }\n",
|
283 |
-
"\n",
|
284 |
-
" .dataframe tbody tr th {\n",
|
285 |
-
" vertical-align: top;\n",
|
286 |
-
" }\n",
|
287 |
-
"\n",
|
288 |
-
" .dataframe thead th {\n",
|
289 |
-
" text-align: right;\n",
|
290 |
-
" }\n",
|
291 |
-
"</style>\n",
|
292 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
293 |
-
" <thead>\n",
|
294 |
-
" <tr style=\"text-align: right;\">\n",
|
295 |
-
" <th></th>\n",
|
296 |
-
" <th>hvac_N</th>\n",
|
297 |
-
" <th>hvac_S</th>\n",
|
298 |
-
" <th>air_temp_set_1</th>\n",
|
299 |
-
" <th>solar_radiation_set_1</th>\n",
|
300 |
-
" </tr>\n",
|
301 |
-
" </thead>\n",
|
302 |
-
" <tbody>\n",
|
303 |
-
" <tr>\n",
|
304 |
-
" <th>2018-01-01 01:00:00</th>\n",
|
305 |
-
" <td>37.525001</td>\n",
|
306 |
-
" <td>19.395</td>\n",
|
307 |
-
" <td>10.8900</td>\n",
|
308 |
-
" <td>2.125</td>\n",
|
309 |
-
" </tr>\n",
|
310 |
-
" <tr>\n",
|
311 |
-
" <th>2018-01-01 02:00:00</th>\n",
|
312 |
-
" <td>37.750001</td>\n",
|
313 |
-
" <td>22.775</td>\n",
|
314 |
-
" <td>10.7550</td>\n",
|
315 |
-
" <td>0.000</td>\n",
|
316 |
-
" </tr>\n",
|
317 |
-
" <tr>\n",
|
318 |
-
" <th>2018-01-01 03:00:00</th>\n",
|
319 |
-
" <td>37.550001</td>\n",
|
320 |
-
" <td>18.920</td>\n",
|
321 |
-
" <td>10.4775</td>\n",
|
322 |
-
" <td>0.000</td>\n",
|
323 |
-
" </tr>\n",
|
324 |
-
" <tr>\n",
|
325 |
-
" <th>2018-01-01 04:00:00</th>\n",
|
326 |
-
" <td>36.675001</td>\n",
|
327 |
-
" <td>21.600</td>\n",
|
328 |
-
" <td>9.9925</td>\n",
|
329 |
-
" <td>0.000</td>\n",
|
330 |
-
" </tr>\n",
|
331 |
-
" <tr>\n",
|
332 |
-
" <th>2018-01-01 05:00:00</th>\n",
|
333 |
-
" <td>37.272500</td>\n",
|
334 |
-
" <td>19.000</td>\n",
|
335 |
-
" <td>9.8050</td>\n",
|
336 |
-
" <td>0.000</td>\n",
|
337 |
-
" </tr>\n",
|
338 |
-
" </tbody>\n",
|
339 |
-
"</table>\n",
|
340 |
-
"</div>"
|
341 |
-
],
|
342 |
-
"text/plain": [
|
343 |
-
" hvac_N hvac_S air_temp_set_1 solar_radiation_set_1\n",
|
344 |
-
"2018-01-01 01:00:00 37.525001 19.395 10.8900 2.125\n",
|
345 |
-
"2018-01-01 02:00:00 37.750001 22.775 10.7550 0.000\n",
|
346 |
-
"2018-01-01 03:00:00 37.550001 18.920 10.4775 0.000\n",
|
347 |
-
"2018-01-01 04:00:00 36.675001 21.600 9.9925 0.000\n",
|
348 |
-
"2018-01-01 05:00:00 37.272500 19.000 9.8050 0.000"
|
349 |
-
]
|
350 |
-
},
|
351 |
-
"execution_count": 69,
|
352 |
-
"metadata": {},
|
353 |
-
"output_type": "execute_result"
|
354 |
-
}
|
355 |
-
],
|
356 |
"source": [
|
357 |
"# interpolation of the whole data set\n",
|
358 |
"\n",
|
359 |
"ip_eed_1h = pd.DataFrame()\n",
|
360 |
"for ii in eed_1h.columns:\n",
|
361 |
-
" ip_df = interpolate_gaps(eed_1h, ii)\n",
|
362 |
" ip_eed_1h = pd.concat([ip_eed_1h, ip_df[0]], axis=1) # axis=1 for horizontal concat\n",
|
363 |
"ip_eed_1h.columns = list(eed_1h.columns)\n",
|
364 |
"\n",
|
365 |
-
"
|
366 |
-
"ip_eed_1h = ip_eed_1h.reset_index()\n",
|
367 |
-
"ip_eed_1h = ip_eed_1h.rename(columns={'index': 'date'})\n",
|
368 |
-
"ip_eed_1h.head()\n",
|
369 |
-
"\n",
|
370 |
"ip_eed_1h.to_csv(dataPATH + r\"\\interpolated_energy_data.csv\")\n",
|
371 |
"\n",
|
372 |
"ip_eed_1h.head()"
|
@@ -384,26 +236,6 @@
|
|
384 |
"\n",
|
385 |
"plt.show()"
|
386 |
]
|
387 |
-
},
|
388 |
-
{
|
389 |
-
"cell_type": "code",
|
390 |
-
"execution_count": 73,
|
391 |
-
"metadata": {},
|
392 |
-
"outputs": [],
|
393 |
-
"source": [
|
394 |
-
"# Reset the index and rename the columns\n",
|
395 |
-
"# ip_eed_1h = ip_eed_1h.set_index('date')\n",
|
396 |
-
"ip_eed_1h.head()\n",
|
397 |
-
"\n",
|
398 |
-
"ip_eed_1h.to_csv(dataPATH + r\"\\interpolated_energy_data.csv\")"
|
399 |
-
]
|
400 |
-
},
|
401 |
-
{
|
402 |
-
"cell_type": "code",
|
403 |
-
"execution_count": null,
|
404 |
-
"metadata": {},
|
405 |
-
"outputs": [],
|
406 |
-
"source": []
|
407 |
}
|
408 |
],
|
409 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd \n",
|
10 |
"from datetime import datetime \n",
|
11 |
"from datetime import timedelta\n",
|
12 |
+
"from datetime import date\n",
|
13 |
"import matplotlib.pyplot as plt\n",
|
14 |
"# import seaborn as sns\n",
|
15 |
"import numpy as np\n",
|
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
"metadata": {},
|
37 |
"outputs": [],
|
38 |
"source": [
|
|
|
51 |
},
|
52 |
{
|
53 |
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
"metadata": {
|
56 |
"vscode": {
|
57 |
"languageId": "ruby"
|
|
|
102 |
"plt.show()"
|
103 |
]
|
104 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
{
|
106 |
"cell_type": "markdown",
|
107 |
"metadata": {},
|
|
|
121 |
" one = timedelta(hours=1)\n",
|
122 |
" secondTSr = secondTS[::-1].copy()\n",
|
123 |
" firstTSr = firstTS[::-1].copy()\n",
|
124 |
+
" indexr = pd.date_range(start=firstTS.index[0], end=secondTS.index[-1], freq='H')\n",
|
125 |
" firstTSr.index = indexr[-len(firstTSr):]\n",
|
126 |
" secondTSr.index = indexr[:len(secondTSr)]\n",
|
127 |
" \n",
|
|
|
142 |
},
|
143 |
{
|
144 |
"cell_type": "code",
|
145 |
+
"execution_count": null,
|
146 |
"metadata": {},
|
147 |
"outputs": [],
|
148 |
"source": [
|
|
|
176 |
},
|
177 |
{
|
178 |
"cell_type": "code",
|
179 |
+
"execution_count": null,
|
180 |
"metadata": {},
|
181 |
"outputs": [],
|
182 |
"source": [
|
|
|
190 |
" for ii in range(len(dfs)-1):\n",
|
191 |
" seasonal_periods = max(min([len(dfs[ii]), len(dfs[ii+1])]) // 2 - 10, 2)\n",
|
192 |
" \n",
|
193 |
+
" if seasonal_periods > 24*7: # Using more than 1 week of seasonal patterns is not necessary\n",
|
194 |
" seasonal_periods = 24*7\n",
|
195 |
" interpolation = fillgap(dfs[ii][col], dfs[ii+1][col], seasonal_periods)\n",
|
196 |
" else:\n",
|
|
|
206 |
},
|
207 |
{
|
208 |
"cell_type": "code",
|
209 |
+
"execution_count": null,
|
210 |
"metadata": {},
|
211 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
"source": [
|
213 |
"# interpolation of the whole data set\n",
|
214 |
"\n",
|
215 |
"ip_eed_1h = pd.DataFrame()\n",
|
216 |
"for ii in eed_1h.columns:\n",
|
217 |
+
" ip_df = interpolate_gaps(eed_1h['2018-1-2':], ii)\n",
|
218 |
" ip_eed_1h = pd.concat([ip_eed_1h, ip_df[0]], axis=1) # axis=1 for horizontal concat\n",
|
219 |
"ip_eed_1h.columns = list(eed_1h.columns)\n",
|
220 |
"\n",
|
221 |
+
"ip_eed_1h = ip_eed_1h.set_axis('date', axis=0)\n",
|
|
|
|
|
|
|
|
|
222 |
"ip_eed_1h.to_csv(dataPATH + r\"\\interpolated_energy_data.csv\")\n",
|
223 |
"\n",
|
224 |
"ip_eed_1h.head()"
|
|
|
236 |
"\n",
|
237 |
"plt.show()"
|
238 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
}
|
240 |
],
|
241 |
"metadata": {
|
EnergyLSTM/lstm_energy.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -58,7 +58,7 @@
|
|
58 |
},
|
59 |
{
|
60 |
"cell_type": "code",
|
61 |
-
"execution_count":
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
64 |
{
|
@@ -92,7 +92,7 @@
|
|
92 |
" </thead>\n",
|
93 |
" <tbody>\n",
|
94 |
" <tr>\n",
|
95 |
-
" <th>
|
96 |
" <td>2018-01-02 00:00:00</td>\n",
|
97 |
" <td>38.225000</td>\n",
|
98 |
" <td>26.4000</td>\n",
|
@@ -101,7 +101,7 @@
|
|
101 |
" <td>87.4450</td>\n",
|
102 |
" </tr>\n",
|
103 |
" <tr>\n",
|
104 |
-
" <th>
|
105 |
" <td>2018-01-02 01:00:00</td>\n",
|
106 |
" <td>38.297501</td>\n",
|
107 |
" <td>21.1750</td>\n",
|
@@ -110,7 +110,7 @@
|
|
110 |
" <td>2.8675</td>\n",
|
111 |
" </tr>\n",
|
112 |
" <tr>\n",
|
113 |
-
" <th>
|
114 |
" <td>2018-01-02 02:00:00</td>\n",
|
115 |
" <td>38.072500</td>\n",
|
116 |
" <td>21.7225</td>\n",
|
@@ -119,7 +119,7 @@
|
|
119 |
" <td>0.0925</td>\n",
|
120 |
" </tr>\n",
|
121 |
" <tr>\n",
|
122 |
-
" <th>
|
123 |
" <td>2018-01-02 03:00:00</td>\n",
|
124 |
" <td>39.147500</td>\n",
|
125 |
" <td>21.7000</td>\n",
|
@@ -128,7 +128,7 @@
|
|
128 |
" <td>0.1175</td>\n",
|
129 |
" </tr>\n",
|
130 |
" <tr>\n",
|
131 |
-
" <th>
|
132 |
" <td>2018-01-02 04:00:00</td>\n",
|
133 |
" <td>38.172500</td>\n",
|
134 |
" <td>21.6250</td>\n",
|
@@ -141,22 +141,22 @@
|
|
141 |
"</div>"
|
142 |
],
|
143 |
"text/plain": [
|
144 |
-
"
|
145 |
-
"
|
146 |
-
"
|
147 |
-
"
|
148 |
-
"
|
149 |
-
"
|
150 |
"\n",
|
151 |
-
"
|
152 |
-
"
|
153 |
-
"
|
154 |
-
"
|
155 |
-
"
|
156 |
-
"
|
157 |
]
|
158 |
},
|
159 |
-
"execution_count":
|
160 |
"metadata": {},
|
161 |
"output_type": "execute_result"
|
162 |
}
|
@@ -184,7 +184,7 @@
|
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
-
"execution_count":
|
188 |
"metadata": {},
|
189 |
"outputs": [
|
190 |
{
|
@@ -193,7 +193,7 @@
|
|
193 |
"[]"
|
194 |
]
|
195 |
},
|
196 |
-
"execution_count":
|
197 |
"metadata": {},
|
198 |
"output_type": "execute_result"
|
199 |
}
|
@@ -213,7 +213,7 @@
|
|
213 |
},
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
-
"execution_count":
|
217 |
"metadata": {},
|
218 |
"outputs": [],
|
219 |
"source": [
|
@@ -230,7 +230,7 @@
|
|
230 |
},
|
231 |
{
|
232 |
"cell_type": "code",
|
233 |
-
"execution_count":
|
234 |
"metadata": {},
|
235 |
"outputs": [],
|
236 |
"source": [
|
@@ -255,13 +255,50 @@
|
|
255 |
},
|
256 |
{
|
257 |
"cell_type": "code",
|
258 |
-
"execution_count":
|
259 |
"metadata": {},
|
260 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
"source": [
|
262 |
"train,test = traindataset,testdataset\n",
|
263 |
-
"steps_in_past =
|
264 |
-
"time_step =
|
265 |
"no_inputs = 5\n",
|
266 |
"no_outputs = 2\n",
|
267 |
"def create_dataset(dataset,time_step):\n",
|
@@ -291,9 +328,19 @@
|
|
291 |
},
|
292 |
{
|
293 |
"cell_type": "code",
|
294 |
-
"execution_count":
|
295 |
"metadata": {},
|
296 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
"source": [
|
298 |
"loss = model.evaluate(X_test, y_test)\n",
|
299 |
"test_predict1 = model.predict(X_test)\n",
|
@@ -306,7 +353,7 @@
|
|
306 |
},
|
307 |
{
|
308 |
"cell_type": "code",
|
309 |
-
"execution_count":
|
310 |
"metadata": {},
|
311 |
"outputs": [],
|
312 |
"source": [
|
@@ -315,12 +362,12 @@
|
|
315 |
"# Create a 3x3 grid of subplots\n",
|
316 |
"fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
|
317 |
"\n",
|
318 |
-
"var =
|
319 |
"# Loop over the value index\n",
|
320 |
"for i, ax in enumerate(axes.flat):\n",
|
321 |
" # Plot your data or perform any other operations\n",
|
322 |
-
" ax.plot(
|
323 |
-
" ax.plot(
|
324 |
" # ax.set_title(f'Plot {i+1}')\n",
|
325 |
" ax.set_title('Testing Data - Predicted vs Actual')\n",
|
326 |
" ax.set_xlabel('Time [hours]')\n",
|
@@ -369,7 +416,7 @@
|
|
369 |
},
|
370 |
{
|
371 |
"cell_type": "code",
|
372 |
-
"execution_count":
|
373 |
"metadata": {},
|
374 |
"outputs": [
|
375 |
{
|
@@ -377,94 +424,94 @@
|
|
377 |
"output_type": "stream",
|
378 |
"text": [
|
379 |
"Epoch 1/20\n",
|
380 |
-
"
|
381 |
-
"Epoch 1: val_loss improved from inf to 0.
|
382 |
-
"16/16 [==============================] - 6s
|
383 |
"Epoch 2/20\n",
|
384 |
-
"
|
385 |
-
"Epoch 2: val_loss improved from 0.
|
386 |
-
"16/16 [==============================] - 0s
|
387 |
"Epoch 3/20\n",
|
388 |
-
"
|
389 |
-
"Epoch 3: val_loss improved from 0.
|
390 |
-
"16/16 [==============================] - 0s
|
391 |
"Epoch 4/20\n",
|
392 |
-
"
|
393 |
-
"Epoch 4: val_loss improved from 0.
|
394 |
-
"16/16 [==============================] - 0s
|
395 |
"Epoch 5/20\n",
|
396 |
-
"
|
397 |
-
"Epoch 5: val_loss improved from 0.
|
398 |
-
"16/16 [==============================] - 0s
|
399 |
"Epoch 6/20\n",
|
400 |
-
"
|
401 |
-
"Epoch 6: val_loss
|
402 |
-
"16/16 [==============================] - 0s
|
403 |
"Epoch 7/20\n",
|
404 |
-
"
|
405 |
-
"Epoch 7: val_loss improved from 0.
|
406 |
-
"16/16 [==============================] - 0s
|
407 |
"Epoch 8/20\n",
|
408 |
-
"13/16 [=======================>......] - ETA: 0s - loss: 0.
|
409 |
-
"Epoch 8: val_loss
|
410 |
-
"16/16 [==============================] - 0s
|
411 |
"Epoch 9/20\n",
|
412 |
-
"
|
413 |
-
"Epoch 9: val_loss did not improve from 0.
|
414 |
-
"16/16 [==============================] - 0s
|
415 |
"Epoch 10/20\n",
|
416 |
-
"
|
417 |
-
"Epoch 10: val_loss
|
418 |
-
"16/16 [==============================] - 0s
|
419 |
"Epoch 11/20\n",
|
420 |
"16/16 [==============================] - ETA: 0s - loss: 0.0164\n",
|
421 |
-
"Epoch 11: val_loss did not improve from 0.
|
422 |
-
"16/16 [==============================] - 0s
|
423 |
"Epoch 12/20\n",
|
424 |
-
"
|
425 |
-
"Epoch 12: val_loss
|
426 |
-
"16/16 [==============================] -
|
427 |
"Epoch 13/20\n",
|
428 |
-
"
|
429 |
-
"Epoch 13: val_loss did not improve from 0.
|
430 |
-
"16/16 [==============================] - 0s
|
431 |
"Epoch 14/20\n",
|
432 |
-
"
|
433 |
-
"Epoch 14: val_loss did not improve from 0.
|
434 |
-
"16/16 [==============================] - 0s
|
435 |
"Epoch 15/20\n",
|
436 |
-
"
|
437 |
-
"Epoch 15: val_loss
|
438 |
-
"16/16 [==============================] - 0s
|
439 |
"Epoch 16/20\n",
|
440 |
-
"12/16 [=====================>........] - ETA: 0s - loss: 0.0157\n",
|
441 |
-
"Epoch 16: val_loss did not improve from 0.01155\n",
|
442 |
-
"16/16 [==============================] - 0s 12ms/step - loss: 0.0158 - val_loss: 0.0116\n",
|
443 |
-
"Epoch 17/20\n",
|
444 |
"16/16 [==============================] - ETA: 0s - loss: 0.0149\n",
|
445 |
-
"Epoch
|
446 |
-
"16/16 [==============================] - 0s
|
|
|
|
|
|
|
|
|
447 |
"Epoch 18/20\n",
|
448 |
-
"15/16 [===========================>..] - ETA: 0s - loss: 0.
|
449 |
-
"Epoch 18: val_loss did not improve from 0.
|
450 |
-
"16/16 [==============================] - 0s
|
451 |
"Epoch 19/20\n",
|
452 |
-
"
|
453 |
-
"Epoch 19: val_loss improved from 0.
|
454 |
-
"16/16 [==============================] - 0s
|
455 |
"Epoch 20/20\n",
|
456 |
-
"
|
457 |
-
"Epoch 20: val_loss
|
458 |
-
"16/16 [==============================] - 0s
|
459 |
]
|
460 |
},
|
461 |
{
|
462 |
"data": {
|
463 |
"text/plain": [
|
464 |
-
"<keras.callbacks.History at
|
465 |
]
|
466 |
},
|
467 |
-
"execution_count":
|
468 |
"metadata": {},
|
469 |
"output_type": "execute_result"
|
470 |
}
|
@@ -494,30 +541,30 @@
|
|
494 |
"X_train, y_train = create_dataset(train, time_step)\n",
|
495 |
"X_test, y_test = create_dataset(test, time_step)\n",
|
496 |
"\n",
|
497 |
-
"
|
498 |
"checkpoint_path = \"lstm_energy_01.keras\"\n",
|
499 |
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
500 |
-
"
|
501 |
]
|
502 |
},
|
503 |
{
|
504 |
"cell_type": "code",
|
505 |
-
"execution_count":
|
506 |
"metadata": {},
|
507 |
"outputs": [
|
508 |
{
|
509 |
"name": "stdout",
|
510 |
"output_type": "stream",
|
511 |
"text": [
|
512 |
-
"3/3 [==============================] - 0s
|
513 |
-
"3/3 [==============================] - 1s
|
514 |
-
"Loss: 0.
|
515 |
]
|
516 |
}
|
517 |
],
|
518 |
"source": [
|
519 |
-
"loss =
|
520 |
-
"test_predict1 =
|
521 |
"print(\"Loss: \", loss)\n",
|
522 |
"# Converting values back to the original scale\n",
|
523 |
"scalerBack = MinMaxScaler(feature_range=(mintest, maxtest))\n",
|
@@ -527,7 +574,7 @@
|
|
527 |
},
|
528 |
{
|
529 |
"cell_type": "code",
|
530 |
-
"execution_count":
|
531 |
"metadata": {},
|
532 |
"outputs": [],
|
533 |
"source": [
|
@@ -556,10 +603,15 @@
|
|
556 |
]
|
557 |
},
|
558 |
{
|
559 |
-
"cell_type": "
|
560 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
"metadata": {},
|
562 |
-
"outputs": [],
|
563 |
"source": []
|
564 |
}
|
565 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 85,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
58 |
},
|
59 |
{
|
60 |
"cell_type": "code",
|
61 |
+
"execution_count": 86,
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
64 |
{
|
|
|
92 |
" </thead>\n",
|
93 |
" <tbody>\n",
|
94 |
" <tr>\n",
|
95 |
+
" <th>0</th>\n",
|
96 |
" <td>2018-01-02 00:00:00</td>\n",
|
97 |
" <td>38.225000</td>\n",
|
98 |
" <td>26.4000</td>\n",
|
|
|
101 |
" <td>87.4450</td>\n",
|
102 |
" </tr>\n",
|
103 |
" <tr>\n",
|
104 |
+
" <th>1</th>\n",
|
105 |
" <td>2018-01-02 01:00:00</td>\n",
|
106 |
" <td>38.297501</td>\n",
|
107 |
" <td>21.1750</td>\n",
|
|
|
110 |
" <td>2.8675</td>\n",
|
111 |
" </tr>\n",
|
112 |
" <tr>\n",
|
113 |
+
" <th>2</th>\n",
|
114 |
" <td>2018-01-02 02:00:00</td>\n",
|
115 |
" <td>38.072500</td>\n",
|
116 |
" <td>21.7225</td>\n",
|
|
|
119 |
" <td>0.0925</td>\n",
|
120 |
" </tr>\n",
|
121 |
" <tr>\n",
|
122 |
+
" <th>3</th>\n",
|
123 |
" <td>2018-01-02 03:00:00</td>\n",
|
124 |
" <td>39.147500</td>\n",
|
125 |
" <td>21.7000</td>\n",
|
|
|
128 |
" <td>0.1175</td>\n",
|
129 |
" </tr>\n",
|
130 |
" <tr>\n",
|
131 |
+
" <th>4</th>\n",
|
132 |
" <td>2018-01-02 04:00:00</td>\n",
|
133 |
" <td>38.172500</td>\n",
|
134 |
" <td>21.6250</td>\n",
|
|
|
141 |
"</div>"
|
142 |
],
|
143 |
"text/plain": [
|
144 |
+
" date hvac_N hvac_S day_of_week air_temp_set_1 \\\n",
|
145 |
+
"0 2018-01-02 00:00:00 38.225000 26.4000 1 14.9550 \n",
|
146 |
+
"1 2018-01-02 01:00:00 38.297501 21.1750 1 14.2125 \n",
|
147 |
+
"2 2018-01-02 02:00:00 38.072500 21.7225 1 14.2700 \n",
|
148 |
+
"3 2018-01-02 03:00:00 39.147500 21.7000 1 14.1375 \n",
|
149 |
+
"4 2018-01-02 04:00:00 38.172500 21.6250 1 13.9850 \n",
|
150 |
"\n",
|
151 |
+
" solar_radiation_set_1 \n",
|
152 |
+
"0 87.4450 \n",
|
153 |
+
"1 2.8675 \n",
|
154 |
+
"2 0.0925 \n",
|
155 |
+
"3 0.1175 \n",
|
156 |
+
"4 0.0725 "
|
157 |
]
|
158 |
},
|
159 |
+
"execution_count": 86,
|
160 |
"metadata": {},
|
161 |
"output_type": "execute_result"
|
162 |
}
|
|
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
+
"execution_count": 88,
|
188 |
"metadata": {},
|
189 |
"outputs": [
|
190 |
{
|
|
|
193 |
"[]"
|
194 |
]
|
195 |
},
|
196 |
+
"execution_count": 88,
|
197 |
"metadata": {},
|
198 |
"output_type": "execute_result"
|
199 |
}
|
|
|
213 |
},
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
+
"execution_count": 89,
|
217 |
"metadata": {},
|
218 |
"outputs": [],
|
219 |
"source": [
|
|
|
230 |
},
|
231 |
{
|
232 |
"cell_type": "code",
|
233 |
+
"execution_count": 104,
|
234 |
"metadata": {},
|
235 |
"outputs": [],
|
236 |
"source": [
|
|
|
255 |
},
|
256 |
{
|
257 |
"cell_type": "code",
|
258 |
+
"execution_count": 94,
|
259 |
"metadata": {},
|
260 |
+
"outputs": [
|
261 |
+
{
|
262 |
+
"name": "stdout",
|
263 |
+
"output_type": "stream",
|
264 |
+
"text": [
|
265 |
+
"Epoch 1/5\n",
|
266 |
+
"370/371 [============================>.] - ETA: 0s - loss: 0.0224\n",
|
267 |
+
"Epoch 1: val_loss improved from inf to 0.01162, saving model to lstm_energy_01.keras\n",
|
268 |
+
"371/371 [==============================] - 11s 15ms/step - loss: 0.0224 - val_loss: 0.0116\n",
|
269 |
+
"Epoch 2/5\n",
|
270 |
+
"368/371 [============================>.] - ETA: 0s - loss: 0.0139\n",
|
271 |
+
"Epoch 2: val_loss improved from 0.01162 to 0.01146, saving model to lstm_energy_01.keras\n",
|
272 |
+
"371/371 [==============================] - 5s 12ms/step - loss: 0.0139 - val_loss: 0.0115\n",
|
273 |
+
"Epoch 3/5\n",
|
274 |
+
"370/371 [============================>.] - ETA: 0s - loss: 0.0125\n",
|
275 |
+
"Epoch 3: val_loss improved from 0.01146 to 0.01132, saving model to lstm_energy_01.keras\n",
|
276 |
+
"371/371 [==============================] - 5s 13ms/step - loss: 0.0125 - val_loss: 0.0113\n",
|
277 |
+
"Epoch 4/5\n",
|
278 |
+
"367/371 [============================>.] - ETA: 0s - loss: 0.0119\n",
|
279 |
+
"Epoch 4: val_loss improved from 0.01132 to 0.01007, saving model to lstm_energy_01.keras\n",
|
280 |
+
"371/371 [==============================] - 5s 13ms/step - loss: 0.0119 - val_loss: 0.0101\n",
|
281 |
+
"Epoch 5/5\n",
|
282 |
+
"371/371 [==============================] - ETA: 0s - loss: 0.0117\n",
|
283 |
+
"Epoch 5: val_loss did not improve from 0.01007\n",
|
284 |
+
"371/371 [==============================] - 5s 13ms/step - loss: 0.0117 - val_loss: 0.0101\n"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"data": {
|
289 |
+
"text/plain": [
|
290 |
+
"<keras.callbacks.History at 0x1da353bd790>"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
"execution_count": 94,
|
294 |
+
"metadata": {},
|
295 |
+
"output_type": "execute_result"
|
296 |
+
}
|
297 |
+
],
|
298 |
"source": [
|
299 |
"train,test = traindataset,testdataset\n",
|
300 |
+
"steps_in_past = 7 \n",
|
301 |
+
"time_step = 24\n",
|
302 |
"no_inputs = 5\n",
|
303 |
"no_outputs = 2\n",
|
304 |
"def create_dataset(dataset,time_step):\n",
|
|
|
328 |
},
|
329 |
{
|
330 |
"cell_type": "code",
|
331 |
+
"execution_count": 95,
|
332 |
"metadata": {},
|
333 |
+
"outputs": [
|
334 |
+
{
|
335 |
+
"name": "stdout",
|
336 |
+
"output_type": "stream",
|
337 |
+
"text": [
|
338 |
+
"60/60 [==============================] - 0s 4ms/step - loss: 0.0101\n",
|
339 |
+
"60/60 [==============================] - 1s 3ms/step\n",
|
340 |
+
"Loss: 0.010141444392502308\n"
|
341 |
+
]
|
342 |
+
}
|
343 |
+
],
|
344 |
"source": [
|
345 |
"loss = model.evaluate(X_test, y_test)\n",
|
346 |
"test_predict1 = model.predict(X_test)\n",
|
|
|
353 |
},
|
354 |
{
|
355 |
"cell_type": "code",
|
356 |
+
"execution_count": 100,
|
357 |
"metadata": {},
|
358 |
"outputs": [],
|
359 |
"source": [
|
|
|
362 |
"# Create a 3x3 grid of subplots\n",
|
363 |
"fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
|
364 |
"\n",
|
365 |
+
"var = 15\n",
|
366 |
"# Loop over the value index\n",
|
367 |
"for i, ax in enumerate(axes.flat):\n",
|
368 |
" # Plot your data or perform any other operations\n",
|
369 |
+
" ax.plot(y_test1[var+i*9,0:time_step], label='Original Testing Data', color='blue')\n",
|
370 |
+
" ax.plot(test_predict2[var+i*9,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
371 |
" # ax.set_title(f'Plot {i+1}')\n",
|
372 |
" ax.set_title('Testing Data - Predicted vs Actual')\n",
|
373 |
" ax.set_xlabel('Time [hours]')\n",
|
|
|
416 |
},
|
417 |
{
|
418 |
"cell_type": "code",
|
419 |
+
"execution_count": 105,
|
420 |
"metadata": {},
|
421 |
"outputs": [
|
422 |
{
|
|
|
424 |
"output_type": "stream",
|
425 |
"text": [
|
426 |
"Epoch 1/20\n",
|
427 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0893\n",
|
428 |
+
"Epoch 1: val_loss improved from inf to 0.02898, saving model to lstm_energy_01.keras\n",
|
429 |
+
"16/16 [==============================] - 6s 100ms/step - loss: 0.0820 - val_loss: 0.0290\n",
|
430 |
"Epoch 2/20\n",
|
431 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0316\n",
|
432 |
+
"Epoch 2: val_loss improved from 0.02898 to 0.02435, saving model to lstm_energy_01.keras\n",
|
433 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0310 - val_loss: 0.0243\n",
|
434 |
"Epoch 3/20\n",
|
435 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0242\n",
|
436 |
+
"Epoch 3: val_loss improved from 0.02435 to 0.01740, saving model to lstm_energy_01.keras\n",
|
437 |
+
"16/16 [==============================] - 0s 24ms/step - loss: 0.0242 - val_loss: 0.0174\n",
|
438 |
"Epoch 4/20\n",
|
439 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0213\n",
|
440 |
+
"Epoch 4: val_loss improved from 0.01740 to 0.01566, saving model to lstm_energy_01.keras\n",
|
441 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0213 - val_loss: 0.0157\n",
|
442 |
"Epoch 5/20\n",
|
443 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0189\n",
|
444 |
+
"Epoch 5: val_loss improved from 0.01566 to 0.01483, saving model to lstm_energy_01.keras\n",
|
445 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0189 - val_loss: 0.0148\n",
|
446 |
"Epoch 6/20\n",
|
447 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0184\n",
|
448 |
+
"Epoch 6: val_loss improved from 0.01483 to 0.01359, saving model to lstm_energy_01.keras\n",
|
449 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0182 - val_loss: 0.0136\n",
|
450 |
"Epoch 7/20\n",
|
451 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0177\n",
|
452 |
+
"Epoch 7: val_loss improved from 0.01359 to 0.01285, saving model to lstm_energy_01.keras\n",
|
453 |
+
"16/16 [==============================] - 0s 22ms/step - loss: 0.0175 - val_loss: 0.0128\n",
|
454 |
"Epoch 8/20\n",
|
455 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0168\n",
|
456 |
+
"Epoch 8: val_loss did not improve from 0.01285\n",
|
457 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0171 - val_loss: 0.0148\n",
|
458 |
"Epoch 9/20\n",
|
459 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0178\n",
|
460 |
+
"Epoch 9: val_loss did not improve from 0.01285\n",
|
461 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0175 - val_loss: 0.0143\n",
|
462 |
"Epoch 10/20\n",
|
463 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0165\n",
|
464 |
+
"Epoch 10: val_loss improved from 0.01285 to 0.01277, saving model to lstm_energy_01.keras\n",
|
465 |
+
"16/16 [==============================] - 0s 22ms/step - loss: 0.0166 - val_loss: 0.0128\n",
|
466 |
"Epoch 11/20\n",
|
467 |
"16/16 [==============================] - ETA: 0s - loss: 0.0164\n",
|
468 |
+
"Epoch 11: val_loss did not improve from 0.01277\n",
|
469 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0164 - val_loss: 0.0139\n",
|
470 |
"Epoch 12/20\n",
|
471 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0162\n",
|
472 |
+
"Epoch 12: val_loss improved from 0.01277 to 0.01235, saving model to lstm_energy_01.keras\n",
|
473 |
+
"16/16 [==============================] - 1s 33ms/step - loss: 0.0162 - val_loss: 0.0124\n",
|
474 |
"Epoch 13/20\n",
|
475 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0154\n",
|
476 |
+
"Epoch 13: val_loss did not improve from 0.01235\n",
|
477 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0153 - val_loss: 0.0131\n",
|
478 |
"Epoch 14/20\n",
|
479 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0156\n",
|
480 |
+
"Epoch 14: val_loss did not improve from 0.01235\n",
|
481 |
+
"16/16 [==============================] - 0s 21ms/step - loss: 0.0160 - val_loss: 0.0136\n",
|
482 |
"Epoch 15/20\n",
|
483 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0167\n",
|
484 |
+
"Epoch 15: val_loss did not improve from 0.01235\n",
|
485 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0164 - val_loss: 0.0125\n",
|
486 |
"Epoch 16/20\n",
|
|
|
|
|
|
|
|
|
487 |
"16/16 [==============================] - ETA: 0s - loss: 0.0149\n",
|
488 |
+
"Epoch 16: val_loss improved from 0.01235 to 0.01134, saving model to lstm_energy_01.keras\n",
|
489 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0149 - val_loss: 0.0113\n",
|
490 |
+
"Epoch 17/20\n",
|
491 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0147\n",
|
492 |
+
"Epoch 17: val_loss did not improve from 0.01134\n",
|
493 |
+
"16/16 [==============================] - 0s 21ms/step - loss: 0.0147 - val_loss: 0.0125\n",
|
494 |
"Epoch 18/20\n",
|
495 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0143\n",
|
496 |
+
"Epoch 18: val_loss did not improve from 0.01134\n",
|
497 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0143 - val_loss: 0.0116\n",
|
498 |
"Epoch 19/20\n",
|
499 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0138\n",
|
500 |
+
"Epoch 19: val_loss improved from 0.01134 to 0.01108, saving model to lstm_energy_01.keras\n",
|
501 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0138 - val_loss: 0.0111\n",
|
502 |
"Epoch 20/20\n",
|
503 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0137\n",
|
504 |
+
"Epoch 20: val_loss improved from 0.01108 to 0.01093, saving model to lstm_energy_01.keras\n",
|
505 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0137 - val_loss: 0.0109\n"
|
506 |
]
|
507 |
},
|
508 |
{
|
509 |
"data": {
|
510 |
"text/plain": [
|
511 |
+
"<keras.callbacks.History at 0x1da50f44760>"
|
512 |
]
|
513 |
},
|
514 |
+
"execution_count": 105,
|
515 |
"metadata": {},
|
516 |
"output_type": "execute_result"
|
517 |
}
|
|
|
541 |
"X_train, y_train = create_dataset(train, time_step)\n",
|
542 |
"X_test, y_test = create_dataset(test, time_step)\n",
|
543 |
"\n",
|
544 |
+
"model2 = create_model(X_train, time_step, no_outputs)\n",
|
545 |
"checkpoint_path = \"lstm_energy_01.keras\"\n",
|
546 |
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
547 |
+
"model2.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=20, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
|
548 |
]
|
549 |
},
|
550 |
{
|
551 |
"cell_type": "code",
|
552 |
+
"execution_count": 106,
|
553 |
"metadata": {},
|
554 |
"outputs": [
|
555 |
{
|
556 |
"name": "stdout",
|
557 |
"output_type": "stream",
|
558 |
"text": [
|
559 |
+
"3/3 [==============================] - 0s 5ms/step - loss: 0.0109\n",
|
560 |
+
"3/3 [==============================] - 1s 5ms/step\n",
|
561 |
+
"Loss: 0.010930849239230156\n"
|
562 |
]
|
563 |
}
|
564 |
],
|
565 |
"source": [
|
566 |
+
"loss = model2.evaluate(X_test, y_test)\n",
|
567 |
+
"test_predict1 = model2.predict(X_test)\n",
|
568 |
"print(\"Loss: \", loss)\n",
|
569 |
"# Converting values back to the original scale\n",
|
570 |
"scalerBack = MinMaxScaler(feature_range=(mintest, maxtest))\n",
|
|
|
574 |
},
|
575 |
{
|
576 |
"cell_type": "code",
|
577 |
+
"execution_count": 107,
|
578 |
"metadata": {},
|
579 |
"outputs": [],
|
580 |
"source": [
|
|
|
603 |
]
|
604 |
},
|
605 |
{
|
606 |
+
"cell_type": "markdown",
|
607 |
+
"metadata": {},
|
608 |
+
"source": [
|
609 |
+
"### Model 3 predicting based on past Mondays"
|
610 |
+
]
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"cell_type": "markdown",
|
614 |
"metadata": {},
|
|
|
615 |
"source": []
|
616 |
}
|
617 |
],
|