Spaces:
Sleeping
Sleeping
trained lstm on bigger set
Browse files- EnergyLSTM/EDA_lstm_energy.ipynb +176 -88
- EnergyLSTM/lstm_energy.ipynb +218 -219
EnergyLSTM/EDA_lstm_energy.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -31,7 +31,7 @@
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
-
"execution_count":
|
35 |
"metadata": {},
|
36 |
"outputs": [],
|
37 |
"source": [
|
@@ -50,7 +50,7 @@
|
|
50 |
},
|
51 |
{
|
52 |
"cell_type": "code",
|
53 |
-
"execution_count":
|
54 |
"metadata": {
|
55 |
"vscode": {
|
56 |
"languageId": "ruby"
|
@@ -103,11 +103,22 @@
|
|
103 |
},
|
104 |
{
|
105 |
"cell_type": "code",
|
106 |
-
"execution_count":
|
107 |
"metadata": {},
|
108 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
"source": [
|
110 |
-
"eed_1h[
|
111 |
]
|
112 |
},
|
113 |
{
|
@@ -134,11 +145,11 @@
|
|
134 |
" secondTSr.index = indexr[:len(secondTSr)]\n",
|
135 |
" \n",
|
136 |
" #FORWARD \n",
|
137 |
-
" es = ExponentialSmoothing(firstTS, seasonal_periods=seasonal_periods,seasonal='add').fit()\n",
|
138 |
" forwardPrediction = es.predict(start=firstTS.index[-1]+one, end=secondTS.index[0]-one)\n",
|
139 |
" \n",
|
140 |
" #BACKWARD\n",
|
141 |
-
" es = ExponentialSmoothing(secondTSr, seasonal_periods=seasonal_periods,seasonal='add').fit()\n",
|
142 |
" backwardPrediction = es.predict(start=secondTSr.index[-1]+one, end=firstTSr.index[0]-one)\n",
|
143 |
" \n",
|
144 |
" #INTERPOLATION\n",
|
@@ -150,7 +161,7 @@
|
|
150 |
},
|
151 |
{
|
152 |
"cell_type": "code",
|
153 |
-
"execution_count":
|
154 |
"metadata": {},
|
155 |
"outputs": [],
|
156 |
"source": [
|
@@ -160,7 +171,7 @@
|
|
160 |
" # Prepare the DataFrame\n",
|
161 |
" df = data.copy()\n",
|
162 |
" df = df.reset_index()\n",
|
163 |
-
" df= df.dropna()\n",
|
164 |
" \n",
|
165 |
" # Set the maximum allowable gap (e.g., 1 hour)\n",
|
166 |
" max_gap = pd.Timedelta(hours=1)\n",
|
@@ -184,115 +195,191 @@
|
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
-
"execution_count":
|
188 |
"metadata": {},
|
189 |
"outputs": [],
|
190 |
"source": [
|
191 |
-
"
|
192 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
"\n",
|
194 |
-
"
|
195 |
-
"
|
196 |
-
"
|
197 |
-
"
|
198 |
-
"
|
199 |
-
"
|
200 |
-
" else:\n",
|
201 |
-
" continue"
|
202 |
]
|
203 |
},
|
204 |
{
|
205 |
"cell_type": "code",
|
206 |
-
"execution_count":
|
207 |
"metadata": {},
|
208 |
"outputs": [
|
209 |
{
|
210 |
"name": "stderr",
|
211 |
"output_type": "stream",
|
212 |
"text": [
|
213 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
214 |
-
" self._init_dates(dates, freq)\n",
|
215 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
216 |
-
" self._init_dates(dates, freq)\n",
|
217 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
218 |
-
" self._init_dates(dates, freq)\n",
|
219 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
220 |
-
" self._init_dates(dates, freq)\n",
|
221 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
222 |
-
" self._init_dates(dates, freq)\n",
|
223 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
224 |
-
" self._init_dates(dates, freq)\n",
|
225 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
226 |
-
" self._init_dates(dates, freq)\n",
|
227 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
228 |
-
" self._init_dates(dates, freq)\n",
|
229 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
230 |
-
" self._init_dates(dates, freq)\n",
|
231 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
232 |
-
" self._init_dates(dates, freq)\n",
|
233 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
234 |
-
" self._init_dates(dates, freq)\n",
|
235 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
236 |
-
" self._init_dates(dates, freq)\n",
|
237 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
238 |
-
" self._init_dates(dates, freq)\n",
|
239 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
240 |
-
" self._init_dates(dates, freq)\n",
|
241 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
242 |
-
" self._init_dates(dates, freq)\n",
|
243 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
244 |
-
" self._init_dates(dates, freq)\n",
|
245 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
246 |
-
" self._init_dates(dates, freq)\n",
|
247 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
248 |
-
" self._init_dates(dates, freq)\n",
|
249 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
250 |
-
" self._init_dates(dates, freq)\n",
|
251 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
252 |
-
" self._init_dates(dates, freq)\n",
|
253 |
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
254 |
" warnings.warn(\n",
|
255 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
256 |
-
" self._init_dates(dates, freq)\n",
|
257 |
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
258 |
" warnings.warn(\n",
|
259 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency H will be used.\n",
|
260 |
-
" self._init_dates(dates, freq)\n",
|
261 |
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
262 |
" warnings.warn(\n",
|
263 |
-
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\
|
264 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
266 |
" warnings.warn(\n"
|
267 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
}
|
269 |
],
|
270 |
"source": [
|
271 |
-
"
|
272 |
-
"dfs = split_dfs(eed_1h[['hvac_N']])\n",
|
273 |
"\n",
|
274 |
-
"
|
275 |
-
"
|
276 |
-
"
|
277 |
-
"
|
278 |
-
"
|
279 |
-
"
|
280 |
-
"
|
281 |
-
"
|
282 |
-
"
|
283 |
-
"
|
|
|
|
|
284 |
"\n",
|
285 |
-
"
|
286 |
]
|
287 |
},
|
288 |
{
|
289 |
"cell_type": "code",
|
290 |
-
"execution_count":
|
291 |
"metadata": {},
|
292 |
"outputs": [],
|
293 |
"source": [
|
294 |
"%matplotlib qt\n",
|
295 |
-
"plt.plot(eed_1h['hvac_N'])\n",
|
296 |
"plt.plot(ip_df)\n",
|
297 |
"\n",
|
298 |
"plt.show()"
|
@@ -300,14 +387,15 @@
|
|
300 |
},
|
301 |
{
|
302 |
"cell_type": "code",
|
303 |
-
"execution_count":
|
304 |
"metadata": {},
|
305 |
"outputs": [],
|
306 |
"source": [
|
307 |
-
"
|
308 |
-
"
|
309 |
-
"
|
310 |
-
"
|
|
|
311 |
]
|
312 |
},
|
313 |
{
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 60,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
+
"execution_count": 61,
|
35 |
"metadata": {},
|
36 |
"outputs": [],
|
37 |
"source": [
|
|
|
50 |
},
|
51 |
{
|
52 |
"cell_type": "code",
|
53 |
+
"execution_count": 62,
|
54 |
"metadata": {
|
55 |
"vscode": {
|
56 |
"languageId": "ruby"
|
|
|
103 |
},
|
104 |
{
|
105 |
"cell_type": "code",
|
106 |
+
"execution_count": 63,
|
107 |
"metadata": {},
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"text/plain": [
|
112 |
+
"[<matplotlib.lines.Line2D at 0x1d98c8cdfd0>]"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
"execution_count": 63,
|
116 |
+
"metadata": {},
|
117 |
+
"output_type": "execute_result"
|
118 |
+
}
|
119 |
+
],
|
120 |
"source": [
|
121 |
+
"plt.plot(eed_1h['hvac_N'])"
|
122 |
]
|
123 |
},
|
124 |
{
|
|
|
145 |
" secondTSr.index = indexr[:len(secondTSr)]\n",
|
146 |
" \n",
|
147 |
" #FORWARD \n",
|
148 |
+
" es = ExponentialSmoothing(firstTS, seasonal_periods=seasonal_periods,seasonal='add', freq='H').fit()\n",
|
149 |
" forwardPrediction = es.predict(start=firstTS.index[-1]+one, end=secondTS.index[0]-one)\n",
|
150 |
" \n",
|
151 |
" #BACKWARD\n",
|
152 |
+
" es = ExponentialSmoothing(secondTSr, seasonal_periods=seasonal_periods,seasonal='add', freq='H').fit()\n",
|
153 |
" backwardPrediction = es.predict(start=secondTSr.index[-1]+one, end=firstTSr.index[0]-one)\n",
|
154 |
" \n",
|
155 |
" #INTERPOLATION\n",
|
|
|
161 |
},
|
162 |
{
|
163 |
"cell_type": "code",
|
164 |
+
"execution_count": 67,
|
165 |
"metadata": {},
|
166 |
"outputs": [],
|
167 |
"source": [
|
|
|
171 |
" # Prepare the DataFrame\n",
|
172 |
" df = data.copy()\n",
|
173 |
" df = df.reset_index()\n",
|
174 |
+
" df = df.dropna()\n",
|
175 |
" \n",
|
176 |
" # Set the maximum allowable gap (e.g., 1 hour)\n",
|
177 |
" max_gap = pd.Timedelta(hours=1)\n",
|
|
|
195 |
},
|
196 |
{
|
197 |
"cell_type": "code",
|
198 |
+
"execution_count": 68,
|
199 |
"metadata": {},
|
200 |
"outputs": [],
|
201 |
"source": [
|
202 |
+
"def interpolate_gaps(data, col):\n",
|
203 |
+
"\n",
|
204 |
+
" # Split the data into multiple DataFrames based on the gaps\n",
|
205 |
+
" dfs = split_dfs(data[[col]])\n",
|
206 |
+
"\n",
|
207 |
+
" # Interpolate the gaps between the DataFrames\n",
|
208 |
+
" ip_df = pd.DataFrame()\n",
|
209 |
+
" for ii in range(len(dfs)-1):\n",
|
210 |
+
" seasonal_periods = max(min([len(dfs[ii]), len(dfs[ii+1])]) // 2 - 10, 2)\n",
|
211 |
+
" \n",
|
212 |
+
" if seasonal_periods > 2*24*7 + 10: # Using more than 1 week of seasonal patterns is not necessary\n",
|
213 |
+
" seasonal_periods = 24*7\n",
|
214 |
+
" interpolation = fillgap(dfs[ii][col], dfs[ii+1][col], seasonal_periods)\n",
|
215 |
+
" else:\n",
|
216 |
+
" interpolation = fillgap(dfs[ii][col], dfs[ii+1][col], seasonal_periods)\n",
|
217 |
"\n",
|
218 |
+
" ip_df = pd.concat([ip_df,dfs[ii][col],interpolation])\n",
|
219 |
+
" \n",
|
220 |
+
" # Add the last DataFrame\n",
|
221 |
+
" ip_df = pd.concat([ip_df,dfs[-1][col]])\n",
|
222 |
+
"\n",
|
223 |
+
" return ip_df"
|
|
|
|
|
224 |
]
|
225 |
},
|
226 |
{
|
227 |
"cell_type": "code",
|
228 |
+
"execution_count": 69,
|
229 |
"metadata": {},
|
230 |
"outputs": [
|
231 |
{
|
232 |
"name": "stderr",
|
233 |
"output_type": "stream",
|
234 |
"text": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
236 |
" warnings.warn(\n",
|
|
|
|
|
237 |
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
238 |
" warnings.warn(\n",
|
|
|
|
|
239 |
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
240 |
" warnings.warn(\n",
|
241 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
242 |
+
" warnings.warn(\n",
|
243 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
244 |
+
" warnings.warn(\n",
|
245 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
246 |
+
" warnings.warn(\n",
|
247 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
248 |
+
" warnings.warn(\n",
|
249 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
250 |
+
" warnings.warn(\n",
|
251 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
252 |
+
" warnings.warn(\n",
|
253 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
254 |
+
" warnings.warn(\n",
|
255 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
256 |
+
" warnings.warn(\n",
|
257 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
258 |
+
" warnings.warn(\n",
|
259 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
260 |
+
" warnings.warn(\n",
|
261 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
262 |
+
" warnings.warn(\n",
|
263 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
264 |
+
" warnings.warn(\n",
|
265 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
266 |
+
" warnings.warn(\n",
|
267 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
268 |
+
" warnings.warn(\n",
|
269 |
+
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
270 |
+
" warnings.warn(\n",
|
271 |
"c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\statsmodels\\tsa\\holtwinters\\model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n",
|
272 |
" warnings.warn(\n"
|
273 |
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"data": {
|
277 |
+
"text/html": [
|
278 |
+
"<div>\n",
|
279 |
+
"<style scoped>\n",
|
280 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
281 |
+
" vertical-align: middle;\n",
|
282 |
+
" }\n",
|
283 |
+
"\n",
|
284 |
+
" .dataframe tbody tr th {\n",
|
285 |
+
" vertical-align: top;\n",
|
286 |
+
" }\n",
|
287 |
+
"\n",
|
288 |
+
" .dataframe thead th {\n",
|
289 |
+
" text-align: right;\n",
|
290 |
+
" }\n",
|
291 |
+
"</style>\n",
|
292 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
293 |
+
" <thead>\n",
|
294 |
+
" <tr style=\"text-align: right;\">\n",
|
295 |
+
" <th></th>\n",
|
296 |
+
" <th>hvac_N</th>\n",
|
297 |
+
" <th>hvac_S</th>\n",
|
298 |
+
" <th>air_temp_set_1</th>\n",
|
299 |
+
" <th>solar_radiation_set_1</th>\n",
|
300 |
+
" </tr>\n",
|
301 |
+
" </thead>\n",
|
302 |
+
" <tbody>\n",
|
303 |
+
" <tr>\n",
|
304 |
+
" <th>2018-01-01 01:00:00</th>\n",
|
305 |
+
" <td>37.525001</td>\n",
|
306 |
+
" <td>19.395</td>\n",
|
307 |
+
" <td>10.8900</td>\n",
|
308 |
+
" <td>2.125</td>\n",
|
309 |
+
" </tr>\n",
|
310 |
+
" <tr>\n",
|
311 |
+
" <th>2018-01-01 02:00:00</th>\n",
|
312 |
+
" <td>37.750001</td>\n",
|
313 |
+
" <td>22.775</td>\n",
|
314 |
+
" <td>10.7550</td>\n",
|
315 |
+
" <td>0.000</td>\n",
|
316 |
+
" </tr>\n",
|
317 |
+
" <tr>\n",
|
318 |
+
" <th>2018-01-01 03:00:00</th>\n",
|
319 |
+
" <td>37.550001</td>\n",
|
320 |
+
" <td>18.920</td>\n",
|
321 |
+
" <td>10.4775</td>\n",
|
322 |
+
" <td>0.000</td>\n",
|
323 |
+
" </tr>\n",
|
324 |
+
" <tr>\n",
|
325 |
+
" <th>2018-01-01 04:00:00</th>\n",
|
326 |
+
" <td>36.675001</td>\n",
|
327 |
+
" <td>21.600</td>\n",
|
328 |
+
" <td>9.9925</td>\n",
|
329 |
+
" <td>0.000</td>\n",
|
330 |
+
" </tr>\n",
|
331 |
+
" <tr>\n",
|
332 |
+
" <th>2018-01-01 05:00:00</th>\n",
|
333 |
+
" <td>37.272500</td>\n",
|
334 |
+
" <td>19.000</td>\n",
|
335 |
+
" <td>9.8050</td>\n",
|
336 |
+
" <td>0.000</td>\n",
|
337 |
+
" </tr>\n",
|
338 |
+
" </tbody>\n",
|
339 |
+
"</table>\n",
|
340 |
+
"</div>"
|
341 |
+
],
|
342 |
+
"text/plain": [
|
343 |
+
" hvac_N hvac_S air_temp_set_1 solar_radiation_set_1\n",
|
344 |
+
"2018-01-01 01:00:00 37.525001 19.395 10.8900 2.125\n",
|
345 |
+
"2018-01-01 02:00:00 37.750001 22.775 10.7550 0.000\n",
|
346 |
+
"2018-01-01 03:00:00 37.550001 18.920 10.4775 0.000\n",
|
347 |
+
"2018-01-01 04:00:00 36.675001 21.600 9.9925 0.000\n",
|
348 |
+
"2018-01-01 05:00:00 37.272500 19.000 9.8050 0.000"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
"execution_count": 69,
|
352 |
+
"metadata": {},
|
353 |
+
"output_type": "execute_result"
|
354 |
}
|
355 |
],
|
356 |
"source": [
|
357 |
+
"# interpolation of the whole data set\n",
|
|
|
358 |
"\n",
|
359 |
+
"ip_eed_1h = pd.DataFrame()\n",
|
360 |
+
"for ii in eed_1h.columns:\n",
|
361 |
+
" ip_df = interpolate_gaps(eed_1h, ii)\n",
|
362 |
+
" ip_eed_1h = pd.concat([ip_eed_1h, ip_df[0]], axis=1) # axis=1 for horizontal concat\n",
|
363 |
+
"ip_eed_1h.columns = list(eed_1h.columns)\n",
|
364 |
+
"\n",
|
365 |
+
"# Reset the index and rename the columns\n",
|
366 |
+
"ip_eed_1h = ip_eed_1h.reset_index()\n",
|
367 |
+
"ip_eed_1h = ip_eed_1h.rename(columns={'index': 'date'})\n",
|
368 |
+
"ip_eed_1h.head()\n",
|
369 |
+
"\n",
|
370 |
+
"ip_eed_1h.to_csv(dataPATH + r\"\\interpolated_energy_data.csv\")\n",
|
371 |
"\n",
|
372 |
+
"ip_eed_1h.head()"
|
373 |
]
|
374 |
},
|
375 |
{
|
376 |
"cell_type": "code",
|
377 |
+
"execution_count": null,
|
378 |
"metadata": {},
|
379 |
"outputs": [],
|
380 |
"source": [
|
381 |
"%matplotlib qt\n",
|
382 |
+
"# plt.plot(eed_1h['hvac_N'])\n",
|
383 |
"plt.plot(ip_df)\n",
|
384 |
"\n",
|
385 |
"plt.show()"
|
|
|
387 |
},
|
388 |
{
|
389 |
"cell_type": "code",
|
390 |
+
"execution_count": 73,
|
391 |
"metadata": {},
|
392 |
"outputs": [],
|
393 |
"source": [
|
394 |
+
"# Reset the index and rename the columns\n",
|
395 |
+
"# ip_eed_1h = ip_eed_1h.set_index('date')\n",
|
396 |
+
"ip_eed_1h.head()\n",
|
397 |
+
"\n",
|
398 |
+
"ip_eed_1h.to_csv(dataPATH + r\"\\interpolated_energy_data.csv\")"
|
399 |
]
|
400 |
},
|
401 |
{
|
EnergyLSTM/lstm_energy.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -10,7 +10,6 @@
|
|
10 |
"from datetime import datetime \n",
|
11 |
"from datetime import date\n",
|
12 |
"import matplotlib.pyplot as plt\n",
|
13 |
-
"# import seaborn as sns\n",
|
14 |
"import numpy as np\n",
|
15 |
"import pandas as pd\n",
|
16 |
"from keras.models import Sequential\n",
|
@@ -21,12 +20,45 @@
|
|
21 |
"\n",
|
22 |
"dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n",
|
23 |
"# all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")\n",
|
24 |
-
"all_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")"
|
|
|
25 |
]
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"metadata": {},
|
31 |
"outputs": [
|
32 |
{
|
@@ -53,128 +85,106 @@
|
|
53 |
" <th>date</th>\n",
|
54 |
" <th>hvac_N</th>\n",
|
55 |
" <th>hvac_S</th>\n",
|
|
|
56 |
" <th>air_temp_set_1</th>\n",
|
57 |
" <th>solar_radiation_set_1</th>\n",
|
58 |
" </tr>\n",
|
59 |
" </thead>\n",
|
60 |
" <tbody>\n",
|
61 |
" <tr>\n",
|
62 |
-
" <th>
|
63 |
-
" <td>2018-01-
|
64 |
-
" <td>
|
65 |
-
" <td>
|
66 |
-
" <td>
|
67 |
-
" <td>
|
|
|
68 |
" </tr>\n",
|
69 |
" <tr>\n",
|
70 |
-
" <th>
|
71 |
-
" <td>2018-01-01
|
72 |
-
" <td>
|
73 |
-
" <td>
|
74 |
-
" <td>
|
75 |
-
" <td>
|
|
|
76 |
" </tr>\n",
|
77 |
" <tr>\n",
|
78 |
-
" <th>
|
79 |
-
" <td>2018-01-
|
80 |
-
" <td>
|
81 |
-
" <td>
|
82 |
-
" <td>
|
83 |
-
" <td>
|
|
|
84 |
" </tr>\n",
|
85 |
" <tr>\n",
|
86 |
-
" <th>
|
87 |
-
" <td>2018-01-
|
88 |
-
" <td>
|
89 |
-
" <td>
|
90 |
-
" <td>
|
91 |
-
" <td>
|
|
|
92 |
" </tr>\n",
|
93 |
" <tr>\n",
|
94 |
-
" <th>
|
95 |
-
" <td>2018-01-
|
96 |
-
" <td>
|
97 |
-
" <td>
|
98 |
-
" <td>
|
99 |
-
" <td>
|
|
|
100 |
" </tr>\n",
|
101 |
" </tbody>\n",
|
102 |
"</table>\n",
|
103 |
"</div>"
|
104 |
],
|
105 |
"text/plain": [
|
106 |
-
"
|
107 |
-
"
|
108 |
-
"
|
109 |
-
"
|
110 |
-
"
|
111 |
-
"
|
112 |
"\n",
|
113 |
-
"
|
114 |
-
"
|
115 |
-
"
|
116 |
-
"
|
117 |
-
"
|
118 |
-
"
|
119 |
]
|
120 |
},
|
121 |
-
"execution_count":
|
122 |
"metadata": {},
|
123 |
"output_type": "execute_result"
|
124 |
}
|
125 |
],
|
126 |
-
"source": [
|
127 |
-
"# Prepar energy data set with extended features\n",
|
128 |
-
"feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
|
129 |
-
"extended_energy_data = all_data[feature_list]\n",
|
130 |
-
"\n",
|
131 |
-
"extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n",
|
132 |
-
"extended_energy_data.set_index('date', inplace=True)\n",
|
133 |
-
"\n",
|
134 |
-
"eed_15m = extended_energy_data.resample('15T').mean()\n",
|
135 |
-
"eed_1h = extended_energy_data.resample('60T').mean()\n",
|
136 |
-
"\n",
|
137 |
-
"eed_15m = eed_15m.reset_index(drop=False)\n",
|
138 |
-
"eed_1h = eed_1h.reset_index(drop=False)\n",
|
139 |
-
"\n",
|
140 |
-
"window_size = 4*4 # 4 hours\n",
|
141 |
-
"eed_15m_avg = eed_15m.copy()\n",
|
142 |
-
"eed_15m_avg['hvac_N'] = eed_15m['hvac_N'].rolling(window=window_size).mean()\n",
|
143 |
-
"eed_15m_avg['hvac_S'] = eed_15m['hvac_S'].rolling(window=window_size).mean()\n",
|
144 |
-
"\n",
|
145 |
-
"window_size = 4 # 4 hours\n",
|
146 |
-
"eed_1h_avg = eed_1h.copy()\n",
|
147 |
-
"eed_1h_avg['hvac_N'] = eed_1h['hvac_N'].rolling(window=window_size).mean()\n",
|
148 |
-
"eed_1h_avg['hvac_S'] = eed_1h['hvac_S'].rolling(window=window_size).mean()\n",
|
149 |
-
"\n",
|
150 |
-
"eed_15m.head()"
|
151 |
-
]
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"cell_type": "code",
|
155 |
-
"execution_count": 24,
|
156 |
-
"metadata": {},
|
157 |
-
"outputs": [],
|
158 |
"source": [
|
159 |
"# energy_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")\n",
|
160 |
"# energy_data = eed_15m\n",
|
161 |
-
"energy_data = eed_15m_avg\n",
|
|
|
|
|
162 |
"\n",
|
163 |
"# Convert the date column to datetime\n",
|
164 |
"energy_data['date'] = pd.to_datetime(energy_data['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
|
165 |
"\n",
|
166 |
-
"energy_data
|
167 |
"# Filter the data for the year 2019\n",
|
168 |
-
"df_filtered = energy_data[ (energy_data.date.dt.date >date(
|
169 |
"\n",
|
170 |
"# Check for NA values in the DataFrame\n",
|
171 |
"if df_filtered.isna().any().any():\n",
|
172 |
-
" print(\"There are NA values in the DataFrame columns.\")"
|
|
|
|
|
173 |
]
|
174 |
},
|
175 |
{
|
176 |
"cell_type": "code",
|
177 |
-
"execution_count":
|
178 |
"metadata": {},
|
179 |
"outputs": [
|
180 |
{
|
@@ -183,15 +193,15 @@
|
|
183 |
"[]"
|
184 |
]
|
185 |
},
|
186 |
-
"execution_count":
|
187 |
"metadata": {},
|
188 |
"output_type": "execute_result"
|
189 |
}
|
190 |
],
|
191 |
"source": [
|
192 |
-
"testdataset_df = df_filtered[(df_filtered.date.dt.date
|
193 |
"\n",
|
194 |
-
"traindataset_df = df_filtered[ (df_filtered.date.dt.date >date(2019,
|
195 |
"\n",
|
196 |
"testdataset = testdataset_df.drop(columns=[\"date\"]).values\n",
|
197 |
"\n",
|
@@ -203,7 +213,7 @@
|
|
203 |
},
|
204 |
{
|
205 |
"cell_type": "code",
|
206 |
-
"execution_count":
|
207 |
"metadata": {},
|
208 |
"outputs": [],
|
209 |
"source": [
|
@@ -220,7 +230,7 @@
|
|
220 |
},
|
221 |
{
|
222 |
"cell_type": "code",
|
223 |
-
"execution_count":
|
224 |
"metadata": {},
|
225 |
"outputs": [],
|
226 |
"source": [
|
@@ -245,46 +255,9 @@
|
|
245 |
},
|
246 |
{
|
247 |
"cell_type": "code",
|
248 |
-
"execution_count":
|
249 |
"metadata": {},
|
250 |
-
"outputs": [
|
251 |
-
{
|
252 |
-
"name": "stdout",
|
253 |
-
"output_type": "stream",
|
254 |
-
"text": [
|
255 |
-
"Epoch 1/5\n",
|
256 |
-
"225/229 [============================>.] - ETA: 0s - loss: 0.0130\n",
|
257 |
-
"Epoch 1: val_loss improved from inf to 0.01885, saving model to lstm_energy_01.keras\n",
|
258 |
-
"229/229 [==============================] - 8s 16ms/step - loss: 0.0129 - val_loss: 0.0189\n",
|
259 |
-
"Epoch 2/5\n",
|
260 |
-
"229/229 [==============================] - ETA: 0s - loss: 0.0058\n",
|
261 |
-
"Epoch 2: val_loss did not improve from 0.01885\n",
|
262 |
-
"229/229 [==============================] - 3s 11ms/step - loss: 0.0058 - val_loss: 0.0192\n",
|
263 |
-
"Epoch 3/5\n",
|
264 |
-
"225/229 [============================>.] - ETA: 0s - loss: 0.0052\n",
|
265 |
-
"Epoch 3: val_loss improved from 0.01885 to 0.01818, saving model to lstm_energy_01.keras\n",
|
266 |
-
"229/229 [==============================] - 3s 11ms/step - loss: 0.0052 - val_loss: 0.0182\n",
|
267 |
-
"Epoch 4/5\n",
|
268 |
-
"225/229 [============================>.] - ETA: 0s - loss: 0.0045\n",
|
269 |
-
"Epoch 4: val_loss did not improve from 0.01818\n",
|
270 |
-
"229/229 [==============================] - 3s 11ms/step - loss: 0.0045 - val_loss: 0.0190\n",
|
271 |
-
"Epoch 5/5\n",
|
272 |
-
"226/229 [============================>.] - ETA: 0s - loss: 0.0041\n",
|
273 |
-
"Epoch 5: val_loss did not improve from 0.01818\n",
|
274 |
-
"229/229 [==============================] - 3s 11ms/step - loss: 0.0041 - val_loss: 0.0186\n"
|
275 |
-
]
|
276 |
-
},
|
277 |
-
{
|
278 |
-
"data": {
|
279 |
-
"text/plain": [
|
280 |
-
"<keras.callbacks.History at 0x25e69ac0370>"
|
281 |
-
]
|
282 |
-
},
|
283 |
-
"execution_count": 35,
|
284 |
-
"metadata": {},
|
285 |
-
"output_type": "execute_result"
|
286 |
-
}
|
287 |
-
],
|
288 |
"source": [
|
289 |
"train,test = traindataset,testdataset\n",
|
290 |
"steps_in_past = 3 \n",
|
@@ -318,19 +291,9 @@
|
|
318 |
},
|
319 |
{
|
320 |
"cell_type": "code",
|
321 |
-
"execution_count":
|
322 |
"metadata": {},
|
323 |
-
"outputs": [
|
324 |
-
{
|
325 |
-
"name": "stdout",
|
326 |
-
"output_type": "stream",
|
327 |
-
"text": [
|
328 |
-
"4/4 [==============================] - 0s 4ms/step - loss: 0.0153\n",
|
329 |
-
"4/4 [==============================] - 1s 4ms/step\n",
|
330 |
-
"Loss: 0.01531214825809002\n"
|
331 |
-
]
|
332 |
-
}
|
333 |
-
],
|
334 |
"source": [
|
335 |
"loss = model.evaluate(X_test, y_test)\n",
|
336 |
"test_predict1 = model.predict(X_test)\n",
|
@@ -343,21 +306,9 @@
|
|
343 |
},
|
344 |
{
|
345 |
"cell_type": "code",
|
346 |
-
"execution_count":
|
347 |
"metadata": {},
|
348 |
-
"outputs": [
|
349 |
-
{
|
350 |
-
"ename": "IndexError",
|
351 |
-
"evalue": "index 106 is out of bounds for axis 0 with size 106",
|
352 |
-
"output_type": "error",
|
353 |
-
"traceback": [
|
354 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
355 |
-
"\u001b[1;31mIndexError\u001b[0m Traceback (most recent call last)",
|
356 |
-
"Cell \u001b[1;32mIn[52], line 10\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Loop over the value index\u001b[39;00m\n\u001b[0;32m 8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, ax \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(axes\u001b[38;5;241m.\u001b[39mflat):\n\u001b[0;32m 9\u001b[0m \u001b[38;5;66;03m# Plot your data or perform any other operations\u001b[39;00m\n\u001b[1;32m---> 10\u001b[0m ax\u001b[38;5;241m.\u001b[39mplot(\u001b[43my_test\u001b[49m\u001b[43m[\u001b[49m\u001b[43mvar\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43mi\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43mtime_step\u001b[49m\u001b[43m]\u001b[49m, label\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mOriginal Testing Data\u001b[39m\u001b[38;5;124m'\u001b[39m, color\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mblue\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 11\u001b[0m ax\u001b[38;5;241m.\u001b[39mplot(test_predict1[var\u001b[38;5;241m+\u001b[39mi,\u001b[38;5;241m0\u001b[39m:time_step], label\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPredicted Testing Data\u001b[39m\u001b[38;5;124m'\u001b[39m, color\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mred\u001b[39m\u001b[38;5;124m'\u001b[39m,alpha\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.8\u001b[39m)\n\u001b[0;32m 12\u001b[0m \u001b[38;5;66;03m# ax.set_title(f'Plot {i+1}')\u001b[39;00m\n",
|
357 |
-
"\u001b[1;31mIndexError\u001b[0m: index 106 is out of bounds for axis 0 with size 106"
|
358 |
-
]
|
359 |
-
}
|
360 |
-
],
|
361 |
"source": [
|
362 |
"%matplotlib qt\n",
|
363 |
"\n",
|
@@ -418,7 +369,7 @@
|
|
418 |
},
|
419 |
{
|
420 |
"cell_type": "code",
|
421 |
-
"execution_count":
|
422 |
"metadata": {},
|
423 |
"outputs": [
|
424 |
{
|
@@ -426,94 +377,94 @@
|
|
426 |
"output_type": "stream",
|
427 |
"text": [
|
428 |
"Epoch 1/20\n",
|
429 |
-
"
|
430 |
-
"Epoch 1: val_loss improved from inf to 0.
|
431 |
-
"
|
432 |
"Epoch 2/20\n",
|
433 |
-
"
|
434 |
-
"Epoch 2: val_loss improved from 0.
|
435 |
-
"
|
436 |
"Epoch 3/20\n",
|
437 |
-
"
|
438 |
-
"Epoch 3: val_loss improved from 0.
|
439 |
-
"
|
440 |
"Epoch 4/20\n",
|
441 |
-
"
|
442 |
-
"Epoch 4: val_loss improved from 0.
|
443 |
-
"
|
444 |
"Epoch 5/20\n",
|
445 |
-
"
|
446 |
-
"Epoch 5: val_loss improved from 0.
|
447 |
-
"
|
448 |
"Epoch 6/20\n",
|
449 |
-
"
|
450 |
-
"Epoch 6: val_loss did not improve from 0.
|
451 |
-
"
|
452 |
"Epoch 7/20\n",
|
453 |
-
"
|
454 |
-
"Epoch 7: val_loss
|
455 |
-
"
|
456 |
"Epoch 8/20\n",
|
457 |
-
"
|
458 |
-
"Epoch 8: val_loss
|
459 |
-
"
|
460 |
"Epoch 9/20\n",
|
461 |
-
"
|
462 |
-
"Epoch 9: val_loss
|
463 |
-
"
|
464 |
"Epoch 10/20\n",
|
465 |
-
"
|
466 |
-
"Epoch 10: val_loss did not improve from 0.
|
467 |
-
"
|
468 |
"Epoch 11/20\n",
|
469 |
-
"
|
470 |
-
"Epoch 11: val_loss did not improve from 0.
|
471 |
-
"
|
472 |
"Epoch 12/20\n",
|
473 |
-
"
|
474 |
-
"Epoch 12: val_loss
|
475 |
-
"
|
476 |
"Epoch 13/20\n",
|
477 |
-
"
|
478 |
-
"Epoch 13: val_loss did not improve from 0.
|
479 |
-
"
|
480 |
"Epoch 14/20\n",
|
481 |
-
"
|
482 |
-
"Epoch 14: val_loss
|
483 |
-
"
|
484 |
"Epoch 15/20\n",
|
485 |
-
"
|
486 |
-
"Epoch 15: val_loss
|
487 |
-
"
|
488 |
"Epoch 16/20\n",
|
489 |
-
"
|
490 |
-
"Epoch 16: val_loss
|
491 |
-
"
|
492 |
"Epoch 17/20\n",
|
493 |
-
"
|
494 |
-
"Epoch 17: val_loss did not improve from 0.
|
495 |
-
"
|
496 |
"Epoch 18/20\n",
|
497 |
-
"
|
498 |
-
"Epoch 18: val_loss
|
499 |
-
"
|
500 |
"Epoch 19/20\n",
|
501 |
-
"
|
502 |
-
"Epoch 19: val_loss
|
503 |
-
"
|
504 |
"Epoch 20/20\n",
|
505 |
-
"
|
506 |
-
"Epoch 20: val_loss did not improve from 0.
|
507 |
-
"
|
508 |
]
|
509 |
},
|
510 |
{
|
511 |
"data": {
|
512 |
"text/plain": [
|
513 |
-
"<keras.callbacks.History at
|
514 |
]
|
515 |
},
|
516 |
-
"execution_count":
|
517 |
"metadata": {},
|
518 |
"output_type": "execute_result"
|
519 |
}
|
@@ -551,10 +502,58 @@
|
|
551 |
},
|
552 |
{
|
553 |
"cell_type": "code",
|
554 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
"metadata": {},
|
556 |
"outputs": [],
|
557 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
},
|
559 |
{
|
560 |
"cell_type": "code",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 61,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
10 |
"from datetime import datetime \n",
|
11 |
"from datetime import date\n",
|
12 |
"import matplotlib.pyplot as plt\n",
|
|
|
13 |
"import numpy as np\n",
|
14 |
"import pandas as pd\n",
|
15 |
"from keras.models import Sequential\n",
|
|
|
20 |
"\n",
|
21 |
"dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n",
|
22 |
"# all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")\n",
|
23 |
+
"all_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")\n",
|
24 |
+
"interpolated_data = pd.read_csv(dataPATH + r\"\\interpolated_energy_data.csv\", index_col=0)"
|
25 |
]
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"# Prepar energy data set with extended features\n",
|
34 |
+
"feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
|
35 |
+
"extended_energy_data = all_data[feature_list]\n",
|
36 |
+
"\n",
|
37 |
+
"extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n",
|
38 |
+
"extended_energy_data.set_index('date', inplace=True)\n",
|
39 |
+
"\n",
|
40 |
+
"eed_15m = extended_energy_data.resample('15T').mean()\n",
|
41 |
+
"eed_1h = extended_energy_data.resample('60T').mean()\n",
|
42 |
+
"\n",
|
43 |
+
"eed_15m = eed_15m.reset_index(drop=False)\n",
|
44 |
+
"eed_1h = eed_1h.reset_index(drop=False)\n",
|
45 |
+
"\n",
|
46 |
+
"window_size = 4*4 # 4 hours\n",
|
47 |
+
"eed_15m_avg = eed_15m.copy()\n",
|
48 |
+
"eed_15m_avg['hvac_N'] = eed_15m['hvac_N'].rolling(window=window_size).mean()\n",
|
49 |
+
"eed_15m_avg['hvac_S'] = eed_15m['hvac_S'].rolling(window=window_size).mean()\n",
|
50 |
+
"\n",
|
51 |
+
"window_size = 4 # 4 hours\n",
|
52 |
+
"eed_1h_avg = eed_1h.copy()\n",
|
53 |
+
"eed_1h_avg['hvac_N'] = eed_1h['hvac_N'].rolling(window=window_size).mean()\n",
|
54 |
+
"eed_1h_avg['hvac_S'] = eed_1h['hvac_S'].rolling(window=window_size).mean()\n",
|
55 |
+
"\n",
|
56 |
+
"eed_15m.head()"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 62,
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
64 |
{
|
|
|
85 |
" <th>date</th>\n",
|
86 |
" <th>hvac_N</th>\n",
|
87 |
" <th>hvac_S</th>\n",
|
88 |
+
" <th>day_of_week</th>\n",
|
89 |
" <th>air_temp_set_1</th>\n",
|
90 |
" <th>solar_radiation_set_1</th>\n",
|
91 |
" </tr>\n",
|
92 |
" </thead>\n",
|
93 |
" <tbody>\n",
|
94 |
" <tr>\n",
|
95 |
+
" <th>23</th>\n",
|
96 |
+
" <td>2018-01-02 00:00:00</td>\n",
|
97 |
+
" <td>38.225000</td>\n",
|
98 |
+
" <td>26.4000</td>\n",
|
99 |
+
" <td>1</td>\n",
|
100 |
+
" <td>14.9550</td>\n",
|
101 |
+
" <td>87.4450</td>\n",
|
102 |
" </tr>\n",
|
103 |
" <tr>\n",
|
104 |
+
" <th>24</th>\n",
|
105 |
+
" <td>2018-01-02 01:00:00</td>\n",
|
106 |
+
" <td>38.297501</td>\n",
|
107 |
+
" <td>21.1750</td>\n",
|
108 |
+
" <td>1</td>\n",
|
109 |
+
" <td>14.2125</td>\n",
|
110 |
+
" <td>2.8675</td>\n",
|
111 |
" </tr>\n",
|
112 |
" <tr>\n",
|
113 |
+
" <th>25</th>\n",
|
114 |
+
" <td>2018-01-02 02:00:00</td>\n",
|
115 |
+
" <td>38.072500</td>\n",
|
116 |
+
" <td>21.7225</td>\n",
|
117 |
+
" <td>1</td>\n",
|
118 |
+
" <td>14.2700</td>\n",
|
119 |
+
" <td>0.0925</td>\n",
|
120 |
" </tr>\n",
|
121 |
" <tr>\n",
|
122 |
+
" <th>26</th>\n",
|
123 |
+
" <td>2018-01-02 03:00:00</td>\n",
|
124 |
+
" <td>39.147500</td>\n",
|
125 |
+
" <td>21.7000</td>\n",
|
126 |
+
" <td>1</td>\n",
|
127 |
+
" <td>14.1375</td>\n",
|
128 |
+
" <td>0.1175</td>\n",
|
129 |
" </tr>\n",
|
130 |
" <tr>\n",
|
131 |
+
" <th>27</th>\n",
|
132 |
+
" <td>2018-01-02 04:00:00</td>\n",
|
133 |
+
" <td>38.172500</td>\n",
|
134 |
+
" <td>21.6250</td>\n",
|
135 |
+
" <td>1</td>\n",
|
136 |
+
" <td>13.9850</td>\n",
|
137 |
+
" <td>0.0725</td>\n",
|
138 |
" </tr>\n",
|
139 |
" </tbody>\n",
|
140 |
"</table>\n",
|
141 |
"</div>"
|
142 |
],
|
143 |
"text/plain": [
|
144 |
+
" date hvac_N hvac_S day_of_week air_temp_set_1 \\\n",
|
145 |
+
"23 2018-01-02 00:00:00 38.225000 26.4000 1 14.9550 \n",
|
146 |
+
"24 2018-01-02 01:00:00 38.297501 21.1750 1 14.2125 \n",
|
147 |
+
"25 2018-01-02 02:00:00 38.072500 21.7225 1 14.2700 \n",
|
148 |
+
"26 2018-01-02 03:00:00 39.147500 21.7000 1 14.1375 \n",
|
149 |
+
"27 2018-01-02 04:00:00 38.172500 21.6250 1 13.9850 \n",
|
150 |
"\n",
|
151 |
+
" solar_radiation_set_1 \n",
|
152 |
+
"23 87.4450 \n",
|
153 |
+
"24 2.8675 \n",
|
154 |
+
"25 0.0925 \n",
|
155 |
+
"26 0.1175 \n",
|
156 |
+
"27 0.0725 "
|
157 |
]
|
158 |
},
|
159 |
+
"execution_count": 62,
|
160 |
"metadata": {},
|
161 |
"output_type": "execute_result"
|
162 |
}
|
163 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
"source": [
|
165 |
"# energy_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")\n",
|
166 |
"# energy_data = eed_15m\n",
|
167 |
+
"# energy_data = eed_15m_avg\n",
|
168 |
+
"energy_data = interpolated_data.copy()\n",
|
169 |
+
"energy_data = energy_data.reset_index()\n",
|
170 |
"\n",
|
171 |
"# Convert the date column to datetime\n",
|
172 |
"energy_data['date'] = pd.to_datetime(energy_data['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
|
173 |
"\n",
|
174 |
+
"energy_data.insert(3, 'day_of_week', energy_data['date'].dt.weekday)\n",
|
175 |
"# Filter the data for the year 2019\n",
|
176 |
+
"df_filtered = energy_data[ (energy_data.date.dt.date >date(2018, 1, 1)) & (energy_data.date.dt.date< date(2021, 1, 1))]\n",
|
177 |
"\n",
|
178 |
"# Check for NA values in the DataFrame\n",
|
179 |
"if df_filtered.isna().any().any():\n",
|
180 |
+
" print(\"There are NA values in the DataFrame columns.\")\n",
|
181 |
+
"\n",
|
182 |
+
"df_filtered.head()"
|
183 |
]
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
+
"execution_count": 70,
|
188 |
"metadata": {},
|
189 |
"outputs": [
|
190 |
{
|
|
|
193 |
"[]"
|
194 |
]
|
195 |
},
|
196 |
+
"execution_count": 70,
|
197 |
"metadata": {},
|
198 |
"output_type": "execute_result"
|
199 |
}
|
200 |
],
|
201 |
"source": [
|
202 |
+
"testdataset_df = df_filtered[(df_filtered.date.dt.date >=date(2019, 3, 1)) & (df_filtered.date.dt.date <= date(2019, 6, 1))]\n",
|
203 |
"\n",
|
204 |
+
"traindataset_df = df_filtered[ (df_filtered.date.dt.date <date(2019, 3, 1)) | (df_filtered.date.dt.date > date(2019, 6, 1))]\n",
|
205 |
"\n",
|
206 |
"testdataset = testdataset_df.drop(columns=[\"date\"]).values\n",
|
207 |
"\n",
|
|
|
213 |
},
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
+
"execution_count": 71,
|
217 |
"metadata": {},
|
218 |
"outputs": [],
|
219 |
"source": [
|
|
|
230 |
},
|
231 |
{
|
232 |
"cell_type": "code",
|
233 |
+
"execution_count": null,
|
234 |
"metadata": {},
|
235 |
"outputs": [],
|
236 |
"source": [
|
|
|
255 |
},
|
256 |
{
|
257 |
"cell_type": "code",
|
258 |
+
"execution_count": null,
|
259 |
"metadata": {},
|
260 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
"source": [
|
262 |
"train,test = traindataset,testdataset\n",
|
263 |
"steps_in_past = 3 \n",
|
|
|
291 |
},
|
292 |
{
|
293 |
"cell_type": "code",
|
294 |
+
"execution_count": null,
|
295 |
"metadata": {},
|
296 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
"source": [
|
298 |
"loss = model.evaluate(X_test, y_test)\n",
|
299 |
"test_predict1 = model.predict(X_test)\n",
|
|
|
306 |
},
|
307 |
{
|
308 |
"cell_type": "code",
|
309 |
+
"execution_count": null,
|
310 |
"metadata": {},
|
311 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
"source": [
|
313 |
"%matplotlib qt\n",
|
314 |
"\n",
|
|
|
369 |
},
|
370 |
{
|
371 |
"cell_type": "code",
|
372 |
+
"execution_count": 79,
|
373 |
"metadata": {},
|
374 |
"outputs": [
|
375 |
{
|
|
|
377 |
"output_type": "stream",
|
378 |
"text": [
|
379 |
"Epoch 1/20\n",
|
380 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.1003\n",
|
381 |
+
"Epoch 1: val_loss improved from inf to 0.04277, saving model to lstm_energy_01.keras\n",
|
382 |
+
"16/16 [==============================] - 6s 89ms/step - loss: 0.1003 - val_loss: 0.0428\n",
|
383 |
"Epoch 2/20\n",
|
384 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0340\n",
|
385 |
+
"Epoch 2: val_loss improved from 0.04277 to 0.03142, saving model to lstm_energy_01.keras\n",
|
386 |
+
"16/16 [==============================] - 0s 17ms/step - loss: 0.0340 - val_loss: 0.0314\n",
|
387 |
"Epoch 3/20\n",
|
388 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0270\n",
|
389 |
+
"Epoch 3: val_loss improved from 0.03142 to 0.02204, saving model to lstm_energy_01.keras\n",
|
390 |
+
"16/16 [==============================] - 0s 17ms/step - loss: 0.0268 - val_loss: 0.0220\n",
|
391 |
"Epoch 4/20\n",
|
392 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0220\n",
|
393 |
+
"Epoch 4: val_loss improved from 0.02204 to 0.01482, saving model to lstm_energy_01.keras\n",
|
394 |
+
"16/16 [==============================] - 0s 15ms/step - loss: 0.0220 - val_loss: 0.0148\n",
|
395 |
"Epoch 5/20\n",
|
396 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0197\n",
|
397 |
+
"Epoch 5: val_loss improved from 0.01482 to 0.01388, saving model to lstm_energy_01.keras\n",
|
398 |
+
"16/16 [==============================] - 0s 18ms/step - loss: 0.0192 - val_loss: 0.0139\n",
|
399 |
"Epoch 6/20\n",
|
400 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0176\n",
|
401 |
+
"Epoch 6: val_loss did not improve from 0.01388\n",
|
402 |
+
"16/16 [==============================] - 0s 15ms/step - loss: 0.0177 - val_loss: 0.0156\n",
|
403 |
"Epoch 7/20\n",
|
404 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0177\n",
|
405 |
+
"Epoch 7: val_loss improved from 0.01388 to 0.01233, saving model to lstm_energy_01.keras\n",
|
406 |
+
"16/16 [==============================] - 0s 17ms/step - loss: 0.0177 - val_loss: 0.0123\n",
|
407 |
"Epoch 8/20\n",
|
408 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0172\n",
|
409 |
+
"Epoch 8: val_loss improved from 0.01233 to 0.01210, saving model to lstm_energy_01.keras\n",
|
410 |
+
"16/16 [==============================] - 0s 14ms/step - loss: 0.0171 - val_loss: 0.0121\n",
|
411 |
"Epoch 9/20\n",
|
412 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0174\n",
|
413 |
+
"Epoch 9: val_loss did not improve from 0.01210\n",
|
414 |
+
"16/16 [==============================] - 0s 15ms/step - loss: 0.0174 - val_loss: 0.0126\n",
|
415 |
"Epoch 10/20\n",
|
416 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0162\n",
|
417 |
+
"Epoch 10: val_loss did not improve from 0.01210\n",
|
418 |
+
"16/16 [==============================] - 0s 16ms/step - loss: 0.0165 - val_loss: 0.0138\n",
|
419 |
"Epoch 11/20\n",
|
420 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0164\n",
|
421 |
+
"Epoch 11: val_loss did not improve from 0.01210\n",
|
422 |
+
"16/16 [==============================] - 0s 13ms/step - loss: 0.0164 - val_loss: 0.0141\n",
|
423 |
"Epoch 12/20\n",
|
424 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0167\n",
|
425 |
+
"Epoch 12: val_loss did not improve from 0.01210\n",
|
426 |
+
"16/16 [==============================] - 0s 17ms/step - loss: 0.0166 - val_loss: 0.0139\n",
|
427 |
"Epoch 13/20\n",
|
428 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0165\n",
|
429 |
+
"Epoch 13: val_loss did not improve from 0.01210\n",
|
430 |
+
"16/16 [==============================] - 0s 17ms/step - loss: 0.0162 - val_loss: 0.0137\n",
|
431 |
"Epoch 14/20\n",
|
432 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0158\n",
|
433 |
+
"Epoch 14: val_loss did not improve from 0.01210\n",
|
434 |
+
"16/16 [==============================] - 0s 16ms/step - loss: 0.0156 - val_loss: 0.0122\n",
|
435 |
"Epoch 15/20\n",
|
436 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0150\n",
|
437 |
+
"Epoch 15: val_loss improved from 0.01210 to 0.01155, saving model to lstm_energy_01.keras\n",
|
438 |
+
"16/16 [==============================] - 0s 17ms/step - loss: 0.0153 - val_loss: 0.0116\n",
|
439 |
"Epoch 16/20\n",
|
440 |
+
"12/16 [=====================>........] - ETA: 0s - loss: 0.0157\n",
|
441 |
+
"Epoch 16: val_loss did not improve from 0.01155\n",
|
442 |
+
"16/16 [==============================] - 0s 12ms/step - loss: 0.0158 - val_loss: 0.0116\n",
|
443 |
"Epoch 17/20\n",
|
444 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0149\n",
|
445 |
+
"Epoch 17: val_loss did not improve from 0.01155\n",
|
446 |
+
"16/16 [==============================] - 0s 14ms/step - loss: 0.0149 - val_loss: 0.0118\n",
|
447 |
"Epoch 18/20\n",
|
448 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0142\n",
|
449 |
+
"Epoch 18: val_loss did not improve from 0.01155\n",
|
450 |
+
"16/16 [==============================] - 0s 15ms/step - loss: 0.0144 - val_loss: 0.0118\n",
|
451 |
"Epoch 19/20\n",
|
452 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0142\n",
|
453 |
+
"Epoch 19: val_loss improved from 0.01155 to 0.01153, saving model to lstm_energy_01.keras\n",
|
454 |
+
"16/16 [==============================] - 0s 15ms/step - loss: 0.0142 - val_loss: 0.0115\n",
|
455 |
"Epoch 20/20\n",
|
456 |
+
"12/16 [=====================>........] - ETA: 0s - loss: 0.0147\n",
|
457 |
+
"Epoch 20: val_loss did not improve from 0.01153\n",
|
458 |
+
"16/16 [==============================] - 0s 12ms/step - loss: 0.0142 - val_loss: 0.0125\n"
|
459 |
]
|
460 |
},
|
461 |
{
|
462 |
"data": {
|
463 |
"text/plain": [
|
464 |
+
"<keras.callbacks.History at 0x1da5016dcd0>"
|
465 |
]
|
466 |
},
|
467 |
+
"execution_count": 79,
|
468 |
"metadata": {},
|
469 |
"output_type": "execute_result"
|
470 |
}
|
|
|
502 |
},
|
503 |
{
|
504 |
"cell_type": "code",
|
505 |
+
"execution_count": 80,
|
506 |
+
"metadata": {},
|
507 |
+
"outputs": [
|
508 |
+
{
|
509 |
+
"name": "stdout",
|
510 |
+
"output_type": "stream",
|
511 |
+
"text": [
|
512 |
+
"3/3 [==============================] - 0s 3ms/step - loss: 0.0125\n",
|
513 |
+
"3/3 [==============================] - 1s 4ms/step\n",
|
514 |
+
"Loss: 0.012460779398679733\n"
|
515 |
+
]
|
516 |
+
}
|
517 |
+
],
|
518 |
+
"source": [
|
519 |
+
"loss = model.evaluate(X_test, y_test)\n",
|
520 |
+
"test_predict1 = model.predict(X_test)\n",
|
521 |
+
"print(\"Loss: \", loss)\n",
|
522 |
+
"# Converting values back to the original scale\n",
|
523 |
+
"scalerBack = MinMaxScaler(feature_range=(mintest, maxtest))\n",
|
524 |
+
"test_predict2 = scalerBack.fit_transform(test_predict1)\n",
|
525 |
+
"y_test1 = scalerBack.fit_transform(y_test)\n"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": 81,
|
531 |
"metadata": {},
|
532 |
"outputs": [],
|
533 |
+
"source": [
|
534 |
+
"%matplotlib qt\n",
|
535 |
+
"\n",
|
536 |
+
"# Create a 3x3 grid of subplots\n",
|
537 |
+
"fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
|
538 |
+
"\n",
|
539 |
+
"var = 1\n",
|
540 |
+
"# Loop over the value index\n",
|
541 |
+
"for i, ax in enumerate(axes.flat):\n",
|
542 |
+
" # Plot your data or perform any other operations\n",
|
543 |
+
" ax.plot(y_test1[var+i,0:time_step], label='Original Testing Data', color='blue')\n",
|
544 |
+
" ax.plot(test_predict2[var+i,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
545 |
+
" # ax.set_title(f'Plot {i+1}')\n",
|
546 |
+
" ax.set_title('Testing Data - Predicted vs Actual')\n",
|
547 |
+
" ax.set_xlabel('Time [hours]')\n",
|
548 |
+
" ax.set_ylabel('Energy Consumption [kW]') \n",
|
549 |
+
" ax.legend()\n",
|
550 |
+
"\n",
|
551 |
+
"# Adjust the spacing between subplots\n",
|
552 |
+
"plt.tight_layout()\n",
|
553 |
+
"\n",
|
554 |
+
"# Show the plot\n",
|
555 |
+
"plt.show()"
|
556 |
+
]
|
557 |
},
|
558 |
{
|
559 |
"cell_type": "code",
|