File size: 12,595 Bytes
c27effd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 98,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd \n",
    "from datetime import datetime \n",
    "from datetime import date\n",
    "import matplotlib.pyplot as plt\n",
    "# import seaborn as sns\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from keras.models import Sequential\n",
    "from keras.layers import LSTM, Dense\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
    "from keras.callbacks import ModelCheckpoint\n",
    "\n",
    "dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n",
    "all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 102,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>date</th>\n",
       "      <th>hvac_N</th>\n",
       "      <th>hvac_S</th>\n",
       "      <th>air_temp_set_1</th>\n",
       "      <th>solar_radiation_set_1</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2018-01-01 00:00:00</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>11.64</td>\n",
       "      <td>86.7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2018-01-01 00:01:00</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>11.64</td>\n",
       "      <td>86.7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2018-01-01 00:02:00</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>11.64</td>\n",
       "      <td>86.7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2018-01-01 00:03:00</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>11.64</td>\n",
       "      <td>86.7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2018-01-01 00:04:00</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>11.64</td>\n",
       "      <td>86.7</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                  date  hvac_N  hvac_S  air_temp_set_1  solar_radiation_set_1\n",
       "0  2018-01-01 00:00:00     NaN     NaN           11.64                   86.7\n",
       "1  2018-01-01 00:01:00     NaN     NaN           11.64                   86.7\n",
       "2  2018-01-01 00:02:00     NaN     NaN           11.64                   86.7\n",
       "3  2018-01-01 00:03:00     NaN     NaN           11.64                   86.7\n",
       "4  2018-01-01 00:04:00     NaN     NaN           11.64                   86.7"
      ]
     },
     "execution_count": 102,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
    "extended_energy_data = all_data[feature_list]\n",
    "extended_energy_data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "energy_data = pd.read_csv(dataPATH + r\"\\hvac_data_1h.csv\")\n",
    "\n",
    "# Convert the date column to datetime\n",
    "energy_data['date'] = pd.to_datetime(energy_data['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
    "\n",
    "energy_data['day_of_week'] = energy_data['date'].dt.weekday\n",
    "# Filter the data for the year 2019\n",
    "df_filtered = energy_data[ (energy_data.date.dt.date >date(2019, 1, 20)) & (energy_data.date.dt.date< date(2019, 7, 26))]\n",
    "\n",
    "# Check for NA values in the DataFrame\n",
    "if df_filtered.isna().any().any():\n",
    "    print(\"There are NA values in the DataFrame columns.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "testdataset_df = df_filtered[(df_filtered.date.dt.date <date(2019, 2, 20))]\n",
    "\n",
    "traindataset_df = df_filtered[ (df_filtered.date.dt.date >date(2019, 2, 21))]\n",
    "\n",
    "testdataset = testdataset_df.drop(columns=[\"date\"]).values\n",
    "\n",
    "traindataset = traindataset_df.drop(columns=[\"date\"]).values\n",
    "\n",
    "columns_with_na = traindataset_df.columns[traindataset_df.isna().any()].tolist()\n",
    "columns_with_na"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "traindataset = traindataset.astype('float32')\n",
    "testdataset = testdataset.astype('float32')\n",
    "\n",
    "mintest = np.min(testdataset)\n",
    "maxtest = np.max(testdataset)\n",
    "\n",
    "scaler = MinMaxScaler(feature_range=(0, 1))\n",
    "traindataset = scaler.fit_transform(traindataset)\n",
    "testdataset = scaler.transform(testdataset)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 101,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/5\n",
      "57/58 [============================>.] - ETA: 0s - loss: 0.0238\n",
      "Epoch 1: val_loss improved from inf to 0.01717, saving model to lstm_energy_01.keras\n",
      "58/58 [==============================] - 11s 62ms/step - loss: 0.0238 - val_loss: 0.0172\n",
      "Epoch 2/5\n",
      "56/58 [===========================>..] - ETA: 0s - loss: 0.0139\n",
      "Epoch 2: val_loss improved from 0.01717 to 0.01117, saving model to lstm_energy_01.keras\n",
      "58/58 [==============================] - 2s 42ms/step - loss: 0.0139 - val_loss: 0.0112\n",
      "Epoch 3/5\n",
      "57/58 [============================>.] - ETA: 0s - loss: 0.0116\n",
      "Epoch 3: val_loss improved from 0.01117 to 0.00990, saving model to lstm_energy_01.keras\n",
      "58/58 [==============================] - 2s 36ms/step - loss: 0.0116 - val_loss: 0.0099\n",
      "Epoch 4/5\n",
      "57/58 [============================>.] - ETA: 0s - loss: 0.0084\n",
      "Epoch 4: val_loss improved from 0.00990 to 0.00889, saving model to lstm_energy_01.keras\n",
      "58/58 [==============================] - 2s 40ms/step - loss: 0.0084 - val_loss: 0.0089\n",
      "Epoch 5/5\n",
      "57/58 [============================>.] - ETA: 0s - loss: 0.0066\n",
      "Epoch 5: val_loss did not improve from 0.00889\n",
      "58/58 [==============================] - 2s 37ms/step - loss: 0.0066 - val_loss: 0.0103\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.callbacks.History at 0x1f4931dc790>"
      ]
     },
     "execution_count": 101,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "train,test = traindataset,testdataset\n",
    "days_in_past = 20\n",
    "time_step = 1\n",
    "def create_dataset(dataset,time_step):\n",
    "    x = [[] for _ in range(3)] \n",
    "    Y = [[] for _ in range(2)]\n",
    "    for i in range(time_step * days_in_past, len(dataset) - time_step * days_in_past): # -time_step is to ensure that the Y value has enough values\n",
    "        for j in range(3):\n",
    "            x[j].append(dataset[(i-time_step*days_in_past):i, j])\n",
    "        for j in range(2):\n",
    "            Y[j].append([dataset[x + i, j] for x in range(0,time_step)])    \n",
    "    x = [np.array(feature_list) for feature_list in x]\n",
    "    Y = [np.array(feature_list) for feature_list in Y] \n",
    "    Y = np.stack(Y,axis=1)\n",
    "    Y = np.reshape(Y, (Y.shape[0], time_step*2))\n",
    "    return np.stack(x,axis=2), Y\n",
    "\n",
    "\n",
    "X_train, y_train = create_dataset(train, time_step)\n",
    "X_test, y_test = create_dataset(test, time_step)\n",
    "\n",
    "\n",
    "model = Sequential()\n",
    "model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
    "model.add(LSTM(units=50, return_sequences=True))\n",
    "model.add(LSTM(units=30))\n",
    "model.add(Dense(units=time_step*2))\n",
    "\n",
    "model.compile(optimizer='adam', loss='mean_squared_error')\n",
    "\n",
    "checkpoint_path = \"lstm_energy_01.keras\"\n",
    "checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
    "model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "22/22 [==============================] - 0s 8ms/step - loss: 0.0126\n",
      "22/22 [==============================] - 1s 7ms/step\n",
      "Loss:  0.01257658563554287\n"
     ]
    }
   ],
   "source": [
    "loss            = model.evaluate(X_test, y_test)\n",
    "test_predict1   = model.predict(X_test)\n",
    "print(\"Loss: \", loss)\n",
    "# Converting values back to the original scale\n",
    "scalerBack      = MinMaxScaler(feature_range=(mintest, maxtest))\n",
    "test_predict2   = scalerBack.fit_transform(test_predict1)\n",
    "y_test1         = scalerBack.fit_transform(y_test)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib qt\n",
    "\n",
    "# Create a 3x3 grid of subplots\n",
    "fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
    "\n",
    "# Loop over the value index\n",
    "for i, ax in enumerate(axes.flat):\n",
    "    # Plot your data or perform any other operations\n",
    "    ax.plot(y_test1[i,0:time_step], label='Original Testing Data', color='blue')\n",
    "    ax.plot(test_predict2[i,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
    "    # ax.set_title(f'Plot {i+1}')\n",
    "    ax.set_title('Testing Data - Predicted vs Actual')\n",
    "    ax.set_xlabel('Time [hours]')\n",
    "    ax.set_ylabel('Energy Consumption [kW]')     \n",
    "    ax.legend()\n",
    "\n",
    "# Adjust the spacing between subplots\n",
    "plt.tight_layout()\n",
    "\n",
    "# Show the plot\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib qt\n",
    "index = 100\n",
    "\n",
    "\n",
    "plt.plot(y_test[index,0:24], label='Original Testing Data', color='blue')\n",
    "plt.plot(test_predict1[index,0:24], label='Predicted Testing Data', color='red',alpha=0.8)\n",
    "\n",
    "\n",
    "plt.title('Testing Data - Predicted vs Actual')\n",
    "plt.xlabel('Time [hours]')\n",
    "plt.ylabel('Energy [kW]')\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "y_test[1, 0:24]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "experiments",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.15"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}