File size: 5,631 Bytes
3b66598
 
 
fff2149
 
3b66598
fff2149
 
 
 
 
3b66598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a389dc
 
 
3b66598
 
 
 
 
 
 
4a389dc
3b66598
 
 
4a389dc
fff2149
 
cea29ef
3b66598
 
4a389dc
3b66598
 
 
 
fff2149
3b66598
 
fff2149
4a389dc
3b66598
4a389dc
3b66598
 
4a389dc
3b66598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a389dc
 
3b66598
4a389dc
 
3b66598
4a389dc
 
3b66598
4a389dc
3b66598
4a389dc
3b66598
4a389dc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import json
import joblib
import pandas as pd
from sklearn.preprocessing import StandardScaler
from pickle import load
import numpy as np


class RTUPipeline:
    scaler = None

    def __init__(self, scaler_path=None):
        self.output_col_names = [
            "hp_hws_temp",
            "rtu_003_sa_temp",
            "rtu_003_oadmpr_pct",
            "rtu_003_ra_temp",
            "rtu_003_oa_temp",
            "rtu_003_ma_temp",
            "rtu_003_sf_vfd_spd_fbk_tn",
            "rtu_003_rf_vfd_spd_fbk_tn",
            "rtu_004_sa_temp",
            "rtu_004_oadmpr_pct",
            "rtu_004_ra_temp",
            "rtu_004_oa_temp",
            "rtu_004_ma_temp",
            "rtu_004_sf_vfd_spd_fbk_tn",
            "rtu_004_rf_vfd_spd_fbk_tn",
            "rtu_001_sa_temp",
            "rtu_001_oadmpr_pct",
            "rtu_001_ra_temp",
            "rtu_001_oa_temp",
            "rtu_001_ma_temp",
            "rtu_001_sf_vfd_spd_fbk_tn",
            "rtu_001_rf_vfd_spd_fbk_tn",
            "rtu_002_sa_temp",
            "rtu_002_oadmpr_pct",
            "rtu_002_ra_temp",
            "rtu_002_oa_temp",
            "rtu_002_ma_temp",
            "rtu_002_sf_vfd_spd_fbk_tn",
            "rtu_002_rf_vfd_spd_fbk_tn",
            # "rtu_004_sat_sp_tn",
            # "rtu_003_sat_sp_tn",
            # "rtu_001_sat_sp_tn",
            # "rtu_002_sat_sp_tn",
            # "air_temp_set_1",
            # "air_temp_set_2",
            # "dew_point_temperature_set_1d",
            # "relative_humidity_set_1",
            # "solar_radiation_set_1",
        ]

        self.input_col_names = [
            "air_temp_set_1",
            "air_temp_set_2",
            "dew_point_temperature_set_1d",
            "relative_humidity_set_1",
            "solar_radiation_set_1",
        ]
        self.num_inputs = len(self.input_col_names)
        self.num_outputs = len(self.output_col_names)
        self.column_names = self.output_col_names + self.input_col_names

        if scaler_path:
            self.scaler = self.get_scaler(scaler_path)
        self.df = pd.DataFrame(columns=self.column_names)

    def get_scaler(self, scaler_path):
        return joblib.load(scaler_path)

    def get_window(self, df):
        len_df = len(df)
        if len_df > 30:
            return df[len_df - 31 : len_df].astype("float32")
        else:
            return None

    def transform_window(self, df_window):
        return self.scaler.transform(df_window)

    def prepare_input(self, df_trans):
        return df_trans[:30, :].reshape((1, 30, len(self.column_names)))

    def extract_data_from_message(self, message):
        payload = json.loads(message.payload.decode())

        len_df = len(self.df)
        # self.df.loc[len_df] = {'hp_hws_temp':payload['hp_hws_temp'],
        # 'rtu_003_sa_temp':payload['rtu_003_sa_temp'],
        # 'rtu_003_oadmpr_pct': payload["rtu_003_oadmpr_pct"],
        # 'rtu_003_ra_temp':payload["rtu_003_ra_temp"],
        # 'rtu_003_oa_temp': payload["rtu_003_oa_temp"],
        # 'rtu_003_ma_temp': payload["rtu_003_ma_temp"],
        # 'rtu_003_sf_vfd_spd_fbk_tn': payload["rtu_003_sf_vfd_spd_fbk_tn"],
        # 'rtu_003_rf_vfd_spd_fbk_tn':payload["rtu_003_rf_vfd_spd_fbk_tn"],
        # 'rtu_004_sa_temp':payload["rtu_004_sa_temp"],
        # 'rtu_004_oadmpr_pct':payload["rtu_004_oadmpr_pct"],
        # 'rtu_004_ra_temp':payload["rtu_004_ra_temp"],
        # 'rtu_004_oa_temp':payload["rtu_004_oa_temp"],
        # 'rtu_004_ma_temp':payload["rtu_004_ma_temp"],
        # 'rtu_004_sf_vfd_spd_fbk_tn':payload["rtu_004_sf_vfd_spd_fbk_tn"],
        # 'rtu_004_rf_vfd_spd_fbk_tn':payload["rtu_004_rf_vfd_spd_fbk_tn"],
        # 'rtu_001_sa_temp':payload["rtu_001_sa_temp"],
        # 'rtu_001_oadmpr_pct': payload["rtu_001_oadmpr_pct"],
        # 'rtu_001_ra_temp':payload["rtu_001_ra_temp"],
        # 'rtu_001_oa_temp': payload["rtu_001_oa_temp"],
        # 'rtu_001_ma_temp': payload["rtu_001_ma_temp"],
        # 'rtu_001_sf_vfd_spd_fbk_tn': payload["rtu_001_sf_vfd_spd_fbk_tn"],
        # 'rtu_001_rf_vfd_spd_fbk_tn':payload["rtu_001_rf_vfd_spd_fbk_tn"],
        # 'rtu_002_sa_temp':payload["rtu_002_sa_temp"],
        # 'rtu_002_oadmpr_pct':payload["rtu_002_oadmpr_pct"],
        # 'rtu_002_ra_temp':payload["rtu_002_ra_temp"],
        # 'rtu_002_oa_temp':payload["rtu_002_oa_temp"],
        # 'rtu_002_ma_temp':payload["rtu_002_ma_temp"],
        # 'rtu_002_sf_vfd_spd_fbk_tn':payload["rtu_002_sf_vfd_spd_fbk_tn"],
        # 'rtu_002_rf_vfd_spd_fbk_tn':payload["rtu_002_rf_vfd_spd_fbk_tn"],
        # 'rtu_004_sat_sp_tn':payload["rtu_004_sat_sp_tn"],
        # 'rtu_003_sat_sp_tn' :payload["rtu_003_sat_sp_tn"],
        # 'rtu_001_sat_sp_tn':payload["rtu_001_sat_sp_tn"],
        # 'rtu_002_sat_sp_tn':payload["rtu_002_sat_sp_tn"],
        # 'air_temp_set_1':payload["air_temp_set_1"],
        # 'air_temp_set_2':payload["air_temp_set_2"],
        # 'dew_point_temperature_set_1d':payload["dew_point_temperature_set_1d"],
        # 'relative_humidity_set_1':payload["relative_humidity_set_1"],
        # 'solar_radiation_set_1':payload["solar_radiation_set_1"]}

        k = {}
        for col in self.column_names:
            k[col] = payload[col]
        self.df.loc[len_df] = k
        return self.df

    def fit(self, message):
        df = self.extract_data_from_message(message)
        df_window = self.get_window(df)
        if df_window is not None:
            df_trans = self.transform_window(df_window)
            df_new = self.prepare_input(df_trans)
        else:
            df_new = None
            df_trans = None
        return df_new, df_trans