Spaces:
Sleeping
Sleeping
akshayballal
commited on
Commit
•
4a389dc
1
Parent(s):
cea29ef
main works
Browse files- mqttpublisher.ipynb +12 -225
- src/main.py +13 -16
- src/rtu/RTUAnomalizer.py +39 -20
- src/rtu/RTUPipeline.py +21 -18
mqttpublisher.ipynb
CHANGED
@@ -2,14 +2,14 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
9 |
"name": "stderr",
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
-
"C:\\Users\\
|
13 |
" client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1, clientId)\n"
|
14 |
]
|
15 |
},
|
@@ -171,221 +171,8 @@
|
|
171 |
"published!\n",
|
172 |
"published!\n",
|
173 |
"published!\n",
|
174 |
-
"published!\n",
|
175 |
-
"published!\n",
|
176 |
-
"published!\n",
|
177 |
-
"published!\n",
|
178 |
-
"published!\n",
|
179 |
-
"published!\n",
|
180 |
-
"published!\n",
|
181 |
-
"published!\n",
|
182 |
-
"published!\n",
|
183 |
-
"published!\n",
|
184 |
-
"published!\n",
|
185 |
-
"published!\n",
|
186 |
-
"published!\n",
|
187 |
-
"published!\n",
|
188 |
-
"published!\n",
|
189 |
-
"published!\n",
|
190 |
-
"published!\n",
|
191 |
-
"published!\n",
|
192 |
-
"published!\n",
|
193 |
-
"published!\n",
|
194 |
-
"published!\n",
|
195 |
-
"published!\n",
|
196 |
-
"published!\n",
|
197 |
-
"published!\n",
|
198 |
-
"published!\n",
|
199 |
-
"published!\n",
|
200 |
-
"published!\n",
|
201 |
-
"published!\n",
|
202 |
-
"published!\n",
|
203 |
-
"published!\n",
|
204 |
-
"published!\n",
|
205 |
-
"published!\n",
|
206 |
-
"published!\n",
|
207 |
-
"published!\n",
|
208 |
-
"published!\n",
|
209 |
-
"published!\n",
|
210 |
-
"published!\n",
|
211 |
-
"published!\n",
|
212 |
-
"published!\n",
|
213 |
-
"published!\n",
|
214 |
-
"published!\n",
|
215 |
-
"published!\n",
|
216 |
-
"published!\n",
|
217 |
-
"published!\n",
|
218 |
-
"published!\n",
|
219 |
-
"published!\n",
|
220 |
-
"published!\n",
|
221 |
-
"published!\n",
|
222 |
-
"published!\n",
|
223 |
-
"published!\n",
|
224 |
-
"published!\n",
|
225 |
-
"published!\n",
|
226 |
-
"published!\n",
|
227 |
-
"published!\n",
|
228 |
-
"published!\n",
|
229 |
-
"published!\n",
|
230 |
-
"published!\n",
|
231 |
-
"published!\n",
|
232 |
-
"published!\n",
|
233 |
-
"published!\n",
|
234 |
-
"published!\n",
|
235 |
-
"published!\n",
|
236 |
-
"published!\n",
|
237 |
-
"published!\n",
|
238 |
-
"published!\n",
|
239 |
-
"published!\n",
|
240 |
-
"published!\n",
|
241 |
-
"published!\n",
|
242 |
-
"published!\n",
|
243 |
-
"published!\n",
|
244 |
-
"published!\n",
|
245 |
-
"published!\n",
|
246 |
-
"published!\n",
|
247 |
-
"published!\n",
|
248 |
-
"published!\n",
|
249 |
-
"published!\n",
|
250 |
-
"published!\n",
|
251 |
-
"published!\n",
|
252 |
-
"published!\n",
|
253 |
-
"published!\n",
|
254 |
-
"published!\n",
|
255 |
-
"published!\n",
|
256 |
-
"published!\n",
|
257 |
-
"published!\n",
|
258 |
-
"published!\n",
|
259 |
-
"published!\n",
|
260 |
-
"published!\n",
|
261 |
-
"published!\n",
|
262 |
-
"published!\n",
|
263 |
-
"published!\n",
|
264 |
-
"published!\n",
|
265 |
-
"published!\n",
|
266 |
-
"published!\n",
|
267 |
-
"published!\n",
|
268 |
-
"published!\n",
|
269 |
-
"published!\n",
|
270 |
-
"published!\n",
|
271 |
-
"published!\n",
|
272 |
-
"published!\n",
|
273 |
-
"published!\n",
|
274 |
-
"published!\n",
|
275 |
-
"published!\n",
|
276 |
-
"published!\n",
|
277 |
-
"published!\n",
|
278 |
-
"published!\n",
|
279 |
-
"published!\n",
|
280 |
-
"published!\n",
|
281 |
-
"published!\n",
|
282 |
-
"published!\n",
|
283 |
-
"published!\n",
|
284 |
-
"published!\n",
|
285 |
-
"published!\n",
|
286 |
-
"published!\n",
|
287 |
-
"published!\n",
|
288 |
-
"published!\n",
|
289 |
-
"published!\n",
|
290 |
-
"published!\n",
|
291 |
-
"published!\n",
|
292 |
-
"published!\n",
|
293 |
-
"published!\n",
|
294 |
-
"published!\n",
|
295 |
-
"published!\n",
|
296 |
-
"published!\n",
|
297 |
-
"published!\n",
|
298 |
-
"published!\n",
|
299 |
-
"published!\n",
|
300 |
-
"published!\n",
|
301 |
-
"published!\n",
|
302 |
-
"published!\n",
|
303 |
-
"published!\n",
|
304 |
-
"published!\n",
|
305 |
-
"published!\n",
|
306 |
-
"published!\n",
|
307 |
-
"published!\n",
|
308 |
-
"published!\n",
|
309 |
-
"published!\n",
|
310 |
-
"published!\n",
|
311 |
-
"published!\n",
|
312 |
-
"published!\n",
|
313 |
-
"published!\n",
|
314 |
-
"published!\n",
|
315 |
-
"published!\n",
|
316 |
-
"published!\n",
|
317 |
-
"published!\n",
|
318 |
-
"published!\n",
|
319 |
-
"published!\n",
|
320 |
-
"published!\n",
|
321 |
-
"published!\n",
|
322 |
-
"published!\n",
|
323 |
-
"published!\n",
|
324 |
-
"published!\n",
|
325 |
-
"published!\n",
|
326 |
-
"published!\n",
|
327 |
-
"published!\n",
|
328 |
-
"published!\n",
|
329 |
-
"published!\n",
|
330 |
-
"published!\n",
|
331 |
-
"published!\n",
|
332 |
-
"published!\n",
|
333 |
-
"published!\n",
|
334 |
-
"published!\n",
|
335 |
-
"published!\n",
|
336 |
-
"published!\n",
|
337 |
-
"published!\n",
|
338 |
-
"published!\n",
|
339 |
-
"published!\n",
|
340 |
-
"published!\n",
|
341 |
-
"published!\n",
|
342 |
-
"published!\n",
|
343 |
-
"published!\n",
|
344 |
-
"published!\n",
|
345 |
-
"published!\n",
|
346 |
-
"published!\n",
|
347 |
-
"published!\n",
|
348 |
-
"published!\n",
|
349 |
-
"published!\n",
|
350 |
-
"published!\n",
|
351 |
-
"published!\n",
|
352 |
-
"published!\n",
|
353 |
-
"published!\n",
|
354 |
-
"published!\n",
|
355 |
-
"published!\n",
|
356 |
-
"published!\n",
|
357 |
-
"published!\n",
|
358 |
-
"published!\n",
|
359 |
-
"published!\n",
|
360 |
-
"published!\n",
|
361 |
-
"published!\n",
|
362 |
-
"published!\n",
|
363 |
-
"published!\n",
|
364 |
-
"published!\n",
|
365 |
-
"published!\n",
|
366 |
-
"published!\n",
|
367 |
-
"published!\n",
|
368 |
-
"published!\n",
|
369 |
-
"published!\n",
|
370 |
-
"published!\n",
|
371 |
-
"published!\n",
|
372 |
-
"published!\n",
|
373 |
-
"published!\n",
|
374 |
-
"published!\n",
|
375 |
"published!\n"
|
376 |
]
|
377 |
-
},
|
378 |
-
{
|
379 |
-
"ename": "KeyboardInterrupt",
|
380 |
-
"evalue": "",
|
381 |
-
"output_type": "error",
|
382 |
-
"traceback": [
|
383 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
384 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
385 |
-
"Cell \u001b[1;32mIn[10], line 94\u001b[0m\n\u001b[0;32m 90\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(\u001b[38;5;241m2\u001b[39m)\n\u001b[0;32m 93\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m---> 94\u001b[0m \u001b[43mpublish_sensor_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 95\u001b[0m \u001b[38;5;66;03m# time.sleep(0.1)\u001b[39;00m\n\u001b[0;32m 96\u001b[0m client\u001b[38;5;241m.\u001b[39mdisconnect()\n",
|
386 |
-
"Cell \u001b[1;32mIn[10], line 90\u001b[0m, in \u001b[0;36mpublish_sensor_data\u001b[1;34m()\u001b[0m\n\u001b[0;32m 55\u001b[0m client\u001b[38;5;241m.\u001b[39mpublish(topic, payload\u001b[38;5;241m=\u001b[39mjson\u001b[38;5;241m.\u001b[39mdumps({\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhp_hws_temp\u001b[39m\u001b[38;5;124m'\u001b[39m:hp_hws_temp,\n\u001b[0;32m 56\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrtu_003_sa_temp\u001b[39m\u001b[38;5;124m'\u001b[39m:rtu_003_sa_temp,\n\u001b[0;32m 57\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrtu_003_oadmpr_pct\u001b[39m\u001b[38;5;124m'\u001b[39m: rtu_003_oadmpr_pct,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 87\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelative_humidity_set_1\u001b[39m\u001b[38;5;124m'\u001b[39m:relative_humidity_set_1,\n\u001b[0;32m 88\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msolar_radiation_set_1\u001b[39m\u001b[38;5;124m'\u001b[39m:solar_radiation_set_1}))\n\u001b[0;32m 89\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpublished!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m---> 90\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(\u001b[38;5;241m2\u001b[39m)\n",
|
387 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
|
388 |
-
]
|
389 |
}
|
390 |
],
|
391 |
"source": [
|
@@ -399,7 +186,7 @@
|
|
399 |
"broker_address = \"localhost\"\n",
|
400 |
"broker_port = 1883\n",
|
401 |
"\n",
|
402 |
-
"df = pd.read_csv(\"sample_data_smooth_01.csv\")\n",
|
403 |
"\n",
|
404 |
"client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1, clientId)\n",
|
405 |
"client.connect(broker_address, broker_port)\n",
|
@@ -436,10 +223,10 @@
|
|
436 |
" rtu_002_ma_temp = row['rtu_002_ma_temp']\n",
|
437 |
" rtu_002_sf_vfd_spd_fbk_tn = row['rtu_002_sf_vfd_spd_fbk_tn']\n",
|
438 |
" rtu_002_rf_vfd_spd_fbk_tn = row['rtu_002_rf_vfd_spd_fbk_tn']\n",
|
439 |
-
" rtu_004_sat_sp_tn = row['rtu_004_sat_sp_tn']\n",
|
440 |
-
" rtu_003_sat_sp_tn = row['rtu_003_sat_sp_tn']\n",
|
441 |
-
" rtu_001_sat_sp_tn = row['rtu_001_sat_sp_tn']\n",
|
442 |
-
" rtu_002_sat_sp_tn = row['rtu_002_sat_sp_tn']\n",
|
443 |
" air_temp_set_1 = row['air_temp_set_1']\n",
|
444 |
" air_temp_set_2 = row['air_temp_set_2']\n",
|
445 |
" dew_point_temperature_set_1d = row['dew_point_temperature_set_1d']\n",
|
@@ -476,17 +263,17 @@
|
|
476 |
" 'rtu_002_ma_temp':rtu_002_ma_temp,\n",
|
477 |
" 'rtu_002_sf_vfd_spd_fbk_tn':rtu_002_sf_vfd_spd_fbk_tn,\n",
|
478 |
" 'rtu_002_rf_vfd_spd_fbk_tn':rtu_002_rf_vfd_spd_fbk_tn,\n",
|
479 |
-
" 'rtu_004_sat_sp_tn':rtu_004_sat_sp_tn,\n",
|
480 |
-
" 'rtu_003_sat_sp_tn' :rtu_003_sat_sp_tn,\n",
|
481 |
-
" 'rtu_001_sat_sp_tn':rtu_001_sat_sp_tn,\n",
|
482 |
-
" 'rtu_002_sat_sp_tn':rtu_002_sat_sp_tn,\n",
|
483 |
" 'air_temp_set_1':air_temp_set_1,\n",
|
484 |
" 'air_temp_set_2':air_temp_set_2,\n",
|
485 |
" 'dew_point_temperature_set_1d':dew_point_temperature_set_1d,\n",
|
486 |
" 'relative_humidity_set_1':relative_humidity_set_1,\n",
|
487 |
" 'solar_radiation_set_1':solar_radiation_set_1}))\n",
|
488 |
" print(\"published!\")\n",
|
489 |
-
" time.sleep(2)\n",
|
490 |
"\n",
|
491 |
"\n",
|
492 |
"while True:\n",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
9 |
"name": "stderr",
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
+
"C:\\Users\\arbal\\AppData\\Local\\Temp\\ipykernel_20872\\3033510885.py:13: DeprecationWarning: Callback API version 1 is deprecated, update to latest version\n",
|
13 |
" client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1, clientId)\n"
|
14 |
]
|
15 |
},
|
|
|
171 |
"published!\n",
|
172 |
"published!\n",
|
173 |
"published!\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
"published!\n"
|
175 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
}
|
177 |
],
|
178 |
"source": [
|
|
|
186 |
"broker_address = \"localhost\"\n",
|
187 |
"broker_port = 1883\n",
|
188 |
"\n",
|
189 |
+
"df = pd.read_csv(\"data/sample_data_smooth_01.csv\")\n",
|
190 |
"\n",
|
191 |
"client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1, clientId)\n",
|
192 |
"client.connect(broker_address, broker_port)\n",
|
|
|
223 |
" rtu_002_ma_temp = row['rtu_002_ma_temp']\n",
|
224 |
" rtu_002_sf_vfd_spd_fbk_tn = row['rtu_002_sf_vfd_spd_fbk_tn']\n",
|
225 |
" rtu_002_rf_vfd_spd_fbk_tn = row['rtu_002_rf_vfd_spd_fbk_tn']\n",
|
226 |
+
" # rtu_004_sat_sp_tn = row['rtu_004_sat_sp_tn']\n",
|
227 |
+
" # rtu_003_sat_sp_tn = row['rtu_003_sat_sp_tn']\n",
|
228 |
+
" # rtu_001_sat_sp_tn = row['rtu_001_sat_sp_tn']\n",
|
229 |
+
" # rtu_002_sat_sp_tn = row['rtu_002_sat_sp_tn']\n",
|
230 |
" air_temp_set_1 = row['air_temp_set_1']\n",
|
231 |
" air_temp_set_2 = row['air_temp_set_2']\n",
|
232 |
" dew_point_temperature_set_1d = row['dew_point_temperature_set_1d']\n",
|
|
|
263 |
" 'rtu_002_ma_temp':rtu_002_ma_temp,\n",
|
264 |
" 'rtu_002_sf_vfd_spd_fbk_tn':rtu_002_sf_vfd_spd_fbk_tn,\n",
|
265 |
" 'rtu_002_rf_vfd_spd_fbk_tn':rtu_002_rf_vfd_spd_fbk_tn,\n",
|
266 |
+
" # 'rtu_004_sat_sp_tn':rtu_004_sat_sp_tn,\n",
|
267 |
+
" # 'rtu_003_sat_sp_tn' :rtu_003_sat_sp_tn,\n",
|
268 |
+
" # 'rtu_001_sat_sp_tn':rtu_001_sat_sp_tn,\n",
|
269 |
+
" # 'rtu_002_sat_sp_tn':rtu_002_sat_sp_tn,\n",
|
270 |
" 'air_temp_set_1':air_temp_set_1,\n",
|
271 |
" 'air_temp_set_2':air_temp_set_2,\n",
|
272 |
" 'dew_point_temperature_set_1d':dew_point_temperature_set_1d,\n",
|
273 |
" 'relative_humidity_set_1':relative_humidity_set_1,\n",
|
274 |
" 'solar_radiation_set_1':solar_radiation_set_1}))\n",
|
275 |
" print(\"published!\")\n",
|
276 |
+
" time.sleep(0.2)\n",
|
277 |
"\n",
|
278 |
"\n",
|
279 |
"while True:\n",
|
src/main.py
CHANGED
@@ -4,28 +4,27 @@ from rtu.RTUPipeline import RTUPipeline
|
|
4 |
import paho.mqtt.client as mqtt
|
5 |
|
6 |
|
7 |
-
|
8 |
def main():
|
9 |
rtu_data_pipeline = RTUPipeline(scaler_path="src/rtu/models/scaler_1.pkl")
|
10 |
print(rtu_data_pipeline.scaler)
|
11 |
rtu_anomalizer = RTUAnomalizer(
|
12 |
prediction_model_path="src/rtu/models/lstm_4rtu_smooth_02.keras",
|
13 |
clustering_model_paths=[
|
14 |
-
"rtu/models/kmeans_model1.pkl",
|
15 |
-
"rtu/models/kmeans_model2.pkl",
|
16 |
-
"rtu/models/kmeans_model3.pkl",
|
17 |
-
"rtu/models/kmeans_model4.pkl",
|
18 |
],
|
19 |
num_inputs=rtu_data_pipeline.num_inputs,
|
20 |
-
num_outputs=rtu_data_pipeline.num_outputs
|
21 |
)
|
22 |
-
|
23 |
def on_message(client, userdata, message):
|
24 |
-
print(json.loads(message.payload.decode()))
|
25 |
df_new, df_trans = rtu_data_pipeline.fit(message)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
broker_address = "localhost"
|
30 |
broker_port = 1883
|
31 |
topic = "sensor_data"
|
@@ -34,9 +33,7 @@ def main():
|
|
34 |
client.connect(broker_address, broker_port)
|
35 |
client.subscribe(topic)
|
36 |
client.loop_forever()
|
37 |
-
|
38 |
-
|
39 |
-
if __name__==
|
40 |
main()
|
41 |
-
|
42 |
-
|
|
|
4 |
import paho.mqtt.client as mqtt
|
5 |
|
6 |
|
|
|
7 |
def main():
|
8 |
rtu_data_pipeline = RTUPipeline(scaler_path="src/rtu/models/scaler_1.pkl")
|
9 |
print(rtu_data_pipeline.scaler)
|
10 |
rtu_anomalizer = RTUAnomalizer(
|
11 |
prediction_model_path="src/rtu/models/lstm_4rtu_smooth_02.keras",
|
12 |
clustering_model_paths=[
|
13 |
+
"src/rtu/models/kmeans_model1.pkl",
|
14 |
+
"src/rtu/models/kmeans_model2.pkl",
|
15 |
+
"src/rtu/models/kmeans_model3.pkl",
|
16 |
+
"src/rtu/models/kmeans_model4.pkl",
|
17 |
],
|
18 |
num_inputs=rtu_data_pipeline.num_inputs,
|
19 |
+
num_outputs=rtu_data_pipeline.num_outputs,
|
20 |
)
|
21 |
+
|
22 |
def on_message(client, userdata, message):
|
23 |
+
# print(json.loads(message.payload.decode()))
|
24 |
df_new, df_trans = rtu_data_pipeline.fit(message)
|
25 |
+
if not df_new is None and not df_trans is None:
|
26 |
+
out = rtu_anomalizer.pipeline(df_new, df_trans, rtu_data_pipeline.scaler)
|
27 |
+
|
28 |
broker_address = "localhost"
|
29 |
broker_port = 1883
|
30 |
topic = "sensor_data"
|
|
|
33 |
client.connect(broker_address, broker_port)
|
34 |
client.subscribe(topic)
|
35 |
client.loop_forever()
|
36 |
+
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
main()
|
|
|
|
src/rtu/RTUAnomalizer.py
CHANGED
@@ -2,59 +2,76 @@ import numpy as np
|
|
2 |
from tensorflow.keras.models import load_model
|
3 |
import joblib
|
4 |
|
|
|
5 |
class RTUAnomalizer:
|
6 |
model = None
|
7 |
kmeans_models = []
|
8 |
|
9 |
-
def __init__(
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
self.num_inputs = num_inputs
|
12 |
self.num_outputs = num_outputs
|
13 |
if not prediction_model_path is None and not clustering_model_paths is None:
|
14 |
self.load_models(prediction_model_path, clustering_model_paths)
|
15 |
|
16 |
-
def initialize_lists(size=30):
|
17 |
initial_values = [0] * size
|
18 |
return initial_values.copy(), initial_values.copy(), initial_values.copy()
|
19 |
|
20 |
def load_models(self, prediction_model_path, clustering_model_paths):
|
21 |
self.model = load_model(prediction_model_path)
|
22 |
-
|
23 |
for path in clustering_model_paths:
|
24 |
self.kmeans_models.append(joblib.load(path))
|
25 |
-
|
26 |
def predict(self, df_new):
|
27 |
return self.model.predict(df_new)
|
28 |
|
29 |
-
def calculate_residuals(self,df_trans, pred):
|
30 |
-
actual = df_trans[30
|
31 |
resid = actual - pred
|
32 |
return actual, resid
|
33 |
|
34 |
-
def resize_prediction(self,pred, df_trans):
|
35 |
-
pred.resize(
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
return pred
|
38 |
|
39 |
-
def inverse_transform(scaler, pred, df_trans):
|
40 |
pred = scaler.inverse_transform(np.array(pred))
|
41 |
-
actual = scaler.inverse_transform(np.array([df_trans[30
|
42 |
return actual, pred
|
43 |
|
44 |
-
def update_lists(actual_list, pred_list, resid_list, actual, pred, resid):
|
45 |
actual_list.pop(0)
|
46 |
pred_list.pop(0)
|
47 |
resid_list.pop(0)
|
48 |
-
actual_list.append(actual[0,1])
|
49 |
-
pred_list.append(pred[0,1])
|
50 |
-
resid_list.append(resid[0,1])
|
51 |
return actual_list, pred_list, resid_list
|
52 |
|
53 |
-
def calculate_distances(self,resid):
|
54 |
dist = []
|
55 |
for i, model in enumerate(self.kmeans_models):
|
56 |
-
dist.append(
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
return np.array(dist)
|
59 |
|
60 |
def pipeline(self, df_new, df_trans, scaler):
|
@@ -63,6 +80,8 @@ class RTUAnomalizer:
|
|
63 |
actual, resid = self.calculate_residuals(df_trans, pred)
|
64 |
pred = self.resize_prediction(pred, df_trans)
|
65 |
actual, pred = self.inverse_transform(scaler, pred, df_trans)
|
66 |
-
actual_list, pred_list, resid_list = self.update_lists(
|
|
|
|
|
67 |
dist = self.calculate_distances(resid)
|
68 |
return actual_list, pred_list, resid_list, dist
|
|
|
2 |
from tensorflow.keras.models import load_model
|
3 |
import joblib
|
4 |
|
5 |
+
|
6 |
class RTUAnomalizer:
|
7 |
model = None
|
8 |
kmeans_models = []
|
9 |
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
prediction_model_path=None,
|
13 |
+
clustering_model_paths=None,
|
14 |
+
num_inputs=None,
|
15 |
+
num_outputs=None,
|
16 |
+
):
|
17 |
+
|
18 |
self.num_inputs = num_inputs
|
19 |
self.num_outputs = num_outputs
|
20 |
if not prediction_model_path is None and not clustering_model_paths is None:
|
21 |
self.load_models(prediction_model_path, clustering_model_paths)
|
22 |
|
23 |
+
def initialize_lists(self, size=30):
|
24 |
initial_values = [0] * size
|
25 |
return initial_values.copy(), initial_values.copy(), initial_values.copy()
|
26 |
|
27 |
def load_models(self, prediction_model_path, clustering_model_paths):
|
28 |
self.model = load_model(prediction_model_path)
|
29 |
+
|
30 |
for path in clustering_model_paths:
|
31 |
self.kmeans_models.append(joblib.load(path))
|
32 |
+
|
33 |
def predict(self, df_new):
|
34 |
return self.model.predict(df_new)
|
35 |
|
36 |
+
def calculate_residuals(self, df_trans, pred):
|
37 |
+
actual = df_trans[30, : self.num_outputs]
|
38 |
resid = actual - pred
|
39 |
return actual, resid
|
40 |
|
41 |
+
def resize_prediction(self, pred, df_trans):
|
42 |
+
pred = np.resize(
|
43 |
+
pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :]))
|
44 |
+
)
|
45 |
+
pred[:, -len(df_trans[30, self.num_outputs :]) :] = df_trans[
|
46 |
+
30, self.num_outputs :
|
47 |
+
]
|
48 |
return pred
|
49 |
|
50 |
+
def inverse_transform(self, scaler, pred, df_trans):
|
51 |
pred = scaler.inverse_transform(np.array(pred))
|
52 |
+
actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
|
53 |
return actual, pred
|
54 |
|
55 |
+
def update_lists(self, actual_list, pred_list, resid_list, actual, pred, resid):
|
56 |
actual_list.pop(0)
|
57 |
pred_list.pop(0)
|
58 |
resid_list.pop(0)
|
59 |
+
actual_list.append(actual[0, 1])
|
60 |
+
pred_list.append(pred[0, 1])
|
61 |
+
resid_list.append(resid[0, 1])
|
62 |
return actual_list, pred_list, resid_list
|
63 |
|
64 |
+
def calculate_distances(self, resid):
|
65 |
dist = []
|
66 |
for i, model in enumerate(self.kmeans_models):
|
67 |
+
dist.append(
|
68 |
+
np.linalg.norm(
|
69 |
+
resid[:, (i * 7) + 1 : (i * 7) + 8] - model.cluster_centers_[0],
|
70 |
+
ord=2,
|
71 |
+
axis=1,
|
72 |
+
)
|
73 |
+
)
|
74 |
+
|
75 |
return np.array(dist)
|
76 |
|
77 |
def pipeline(self, df_new, df_trans, scaler):
|
|
|
80 |
actual, resid = self.calculate_residuals(df_trans, pred)
|
81 |
pred = self.resize_prediction(pred, df_trans)
|
82 |
actual, pred = self.inverse_transform(scaler, pred, df_trans)
|
83 |
+
actual_list, pred_list, resid_list = self.update_lists(
|
84 |
+
actual_list, pred_list, resid_list, actual, pred, resid
|
85 |
+
)
|
86 |
dist = self.calculate_distances(resid)
|
87 |
return actual_list, pred_list, resid_list, dist
|
src/rtu/RTUPipeline.py
CHANGED
@@ -50,8 +50,9 @@ class RTUPipeline:
|
|
50 |
# "relative_humidity_set_1",
|
51 |
# "solar_radiation_set_1",
|
52 |
]
|
53 |
-
|
54 |
-
self.input_col_names
|
|
|
55 |
"air_temp_set_2",
|
56 |
"dew_point_temperature_set_1d",
|
57 |
"relative_humidity_set_1",
|
@@ -59,17 +60,17 @@ class RTUPipeline:
|
|
59 |
]
|
60 |
self.num_inputs = len(self.input_col_names)
|
61 |
self.num_outputs = len(self.output_col_names)
|
62 |
-
self.column_names = self.output_col_names+self.input_col_names
|
63 |
|
64 |
if scaler_path:
|
65 |
self.scaler = self.get_scaler(scaler_path)
|
66 |
-
self.df = pd.DataFrame(columns
|
67 |
|
68 |
def get_scaler(self, scaler_path):
|
69 |
return joblib.load(scaler_path)
|
70 |
|
71 |
def get_window(self, df):
|
72 |
-
len_df =
|
73 |
if len_df > 30:
|
74 |
return df[len_df - 31 : len_df].astype("float32")
|
75 |
else:
|
@@ -78,12 +79,12 @@ class RTUPipeline:
|
|
78 |
def transform_window(self, df_window):
|
79 |
return self.scaler.transform(df_window)
|
80 |
|
81 |
-
def prepare_input(self,df_trans):
|
82 |
return df_trans[:30, :].reshape((1, 30, len(self.column_names)))
|
83 |
-
|
84 |
def extract_data_from_message(self, message):
|
85 |
payload = json.loads(message.payload.decode())
|
86 |
-
|
87 |
len_df = len(self.df)
|
88 |
# self.df.loc[len_df] = {'hp_hws_temp':payload['hp_hws_temp'],
|
89 |
# 'rtu_003_sa_temp':payload['rtu_003_sa_temp'],
|
@@ -123,18 +124,20 @@ class RTUPipeline:
|
|
123 |
# 'dew_point_temperature_set_1d':payload["dew_point_temperature_set_1d"],
|
124 |
# 'relative_humidity_set_1':payload["relative_humidity_set_1"],
|
125 |
# 'solar_radiation_set_1':payload["solar_radiation_set_1"]}
|
126 |
-
|
127 |
-
|
128 |
for col in self.column_names:
|
129 |
-
|
|
|
130 |
return self.df
|
131 |
-
|
132 |
-
|
133 |
-
def fit(self,message):
|
134 |
-
len_df = np.len(df)
|
135 |
df = self.extract_data_from_message(message)
|
136 |
-
df_window = self.get_window(df
|
137 |
if df_window is not None:
|
138 |
-
df_trans = self.transform_window(df_window
|
139 |
df_new = self.prepare_input(df_trans)
|
140 |
-
|
|
|
|
|
|
|
|
50 |
# "relative_humidity_set_1",
|
51 |
# "solar_radiation_set_1",
|
52 |
]
|
53 |
+
|
54 |
+
self.input_col_names = [
|
55 |
+
"air_temp_set_1",
|
56 |
"air_temp_set_2",
|
57 |
"dew_point_temperature_set_1d",
|
58 |
"relative_humidity_set_1",
|
|
|
60 |
]
|
61 |
self.num_inputs = len(self.input_col_names)
|
62 |
self.num_outputs = len(self.output_col_names)
|
63 |
+
self.column_names = self.output_col_names + self.input_col_names
|
64 |
|
65 |
if scaler_path:
|
66 |
self.scaler = self.get_scaler(scaler_path)
|
67 |
+
self.df = pd.DataFrame(columns=self.column_names)
|
68 |
|
69 |
def get_scaler(self, scaler_path):
|
70 |
return joblib.load(scaler_path)
|
71 |
|
72 |
def get_window(self, df):
|
73 |
+
len_df = len(df)
|
74 |
if len_df > 30:
|
75 |
return df[len_df - 31 : len_df].astype("float32")
|
76 |
else:
|
|
|
79 |
def transform_window(self, df_window):
|
80 |
return self.scaler.transform(df_window)
|
81 |
|
82 |
+
def prepare_input(self, df_trans):
|
83 |
return df_trans[:30, :].reshape((1, 30, len(self.column_names)))
|
84 |
+
|
85 |
def extract_data_from_message(self, message):
|
86 |
payload = json.loads(message.payload.decode())
|
87 |
+
|
88 |
len_df = len(self.df)
|
89 |
# self.df.loc[len_df] = {'hp_hws_temp':payload['hp_hws_temp'],
|
90 |
# 'rtu_003_sa_temp':payload['rtu_003_sa_temp'],
|
|
|
124 |
# 'dew_point_temperature_set_1d':payload["dew_point_temperature_set_1d"],
|
125 |
# 'relative_humidity_set_1':payload["relative_humidity_set_1"],
|
126 |
# 'solar_radiation_set_1':payload["solar_radiation_set_1"]}
|
127 |
+
|
128 |
+
k = {}
|
129 |
for col in self.column_names:
|
130 |
+
k[col] = payload[col]
|
131 |
+
self.df.loc[len_df] = k
|
132 |
return self.df
|
133 |
+
|
134 |
+
def fit(self, message):
|
|
|
|
|
135 |
df = self.extract_data_from_message(message)
|
136 |
+
df_window = self.get_window(df)
|
137 |
if df_window is not None:
|
138 |
+
df_trans = self.transform_window(df_window)
|
139 |
df_new = self.prepare_input(df_trans)
|
140 |
+
else:
|
141 |
+
df_new = None
|
142 |
+
df_trans = None
|
143 |
+
return df_new, df_trans
|