Spaces:
Sleeping
Sleeping
File size: 6,066 Bytes
e8d4213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import numpy as np
from tensorflow.keras.models import load_model
import joblib
class VAVAnomalizer:
def __init__(
self,
rtu_id,
prediction_model_path,
clustering_model_path,
num_inputs,
num_outputs,
):
"""
Initializes a VAVAnomalizer object.
Args:
rtu_id (int): The ID of the RTU (Roof Top Unit) associated with the VAV (Variable Air Volume) system.
prediction_model_path (str): The file path to the prediction model.
clustering_model_path (str): The file path to the clustering model.
num_inputs (int): The number of input features for the prediction model.
num_outputs (int): The number of output features for the prediction model.
"""
self.rtu_id = rtu_id
self.num_inputs = num_inputs
self.num_outputs = num_outputs
self.load_models(prediction_model_path, clustering_model_path)
def load_models(self, prediction_model_path, clustering_model_path):
"""
Loads the prediction model and clustering model.
Args:
prediction_model_path (str): The file path to the prediction model.
clustering_model_path (str): The file path to the clustering model.
"""
self.model = load_model(prediction_model_path)
self.kmeans_model = joblib.load(clustering_model_path)
def initialize_lists(self, size=30):
"""
Initialize lists for storing actual, predicted, and residual values.
Args:
size (int): Size of the lists.
Returns:
tuple: A tuple containing three lists initialized with zeros.
"""
initial_values = [0] * size
return initial_values.copy(), initial_values.copy(), initial_values.copy()
def predict(self, df_new):
"""
Makes predictions using the prediction model.
Args:
df_new (numpy.ndarray): The new data for prediction.
Returns:
numpy.ndarray: The predicted values.
"""
return self.model.predict(df_new)
def calculate_residuals(self, df_trans, pred):
"""
Calculates the residuals between the actual values and the predicted values.
Args:
df_trans (numpy.ndarray): The transformed data.
pred (numpy.ndarray): The predicted values.
Returns:
numpy.ndarray: The actual values.
numpy.ndarray: The residuals.
"""
actual = df_trans[30, : self.num_outputs]
resid = actual - pred
return actual, resid
def calculate_distances(self, resid):
"""
Calculate the distances between residuals and cluster centers.
Args:
resid (array): Residual values.
Returns:
array: Array of distances.
"""
dist = []
dist.append(np.linalg.norm(resid - self.kmeans_model.cluster_centers_[0]))
return np.array(dist)
def resize_prediction(self, pred, df_trans):
"""
Resize the predicted values to match the shape of the transformed input data.
Args:
pred (array): Predicted values.
df_trans (DataFrame): Transformed input data.
Returns:
array: Resized predicted values.
"""
pred = np.resize(
pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :]))
)
pred[:, -len(df_trans[30, self.num_outputs :]) :] = df_trans[
30, self.num_outputs :
]
return pred
def inverse_transform(self, scaler, pred, df_trans):
"""
Inverse transform the predicted and actual values.
Args:
scaler (object): Scaler object for inverse transformation.
pred (array): Predicted values.
df_trans (DataFrame): Transformed input data.
Returns:
tuple: A tuple containing the actual and predicted values after inverse transformation.
"""
pred = scaler.inverse_transform(np.array(pred))
actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
return actual, pred
def update_lists(self, actual_list, pred_list, resid_list, actual, pred, resid):
"""
Update the lists of actual, predicted, and residual values.
Args:
actual_list (list): List of actual values.
pred_list (list): List of predicted values.
resid_list (list): List of residual values.
actual (array): Actual values.
pred (array): Predicted values.
resid (array): Residual values.
Returns:
tuple: A tuple containing the updated lists of actual, predicted, and residual values.
"""
actual_list.pop(0)
pred_list.pop(0)
resid_list.pop(0)
actual_list.append(actual[0, 1])
pred_list.append(pred[0, 1])
resid_list.append(resid[0, 1])
return actual_list, pred_list, resid_list
def pipeline(self, df_new, df_trans, scaler):
"""
Perform the anomaly detection pipeline.
Args:
df_new (DataFrame): Input data for prediction.
df_trans (DataFrame): Transformed input data.
scaler (object): Scaler object for inverse transformation.
Returns:
tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances.
"""
actual_list, pred_list, resid_list = self.initialize_lists()
pred = self.predict(df_new)
actual, resid = self.calculate_residuals(df_trans, pred)
pred = self.resize_prediction(pred, df_trans)
actual, pred = self.inverse_transform(scaler, pred, df_trans)
actual_list, pred_list, resid_list = self.update_lists(
actual_list, pred_list, resid_list, actual, pred, resid
)
dist = self.calculate_distances(resid)
return actual_list, pred_list, resid_list, dist
|