File size: 6,066 Bytes
e8d4213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
from tensorflow.keras.models import load_model
import joblib


class VAVAnomalizer:
    def __init__(
        self,
        rtu_id,
        prediction_model_path,
        clustering_model_path,
        num_inputs,
        num_outputs,
    ):
        """
        Initializes a VAVAnomalizer object.

        Args:
            rtu_id (int): The ID of the RTU (Roof Top Unit) associated with the VAV (Variable Air Volume) system.
            prediction_model_path (str): The file path to the prediction model.
            clustering_model_path (str): The file path to the clustering model.
            num_inputs (int): The number of input features for the prediction model.
            num_outputs (int): The number of output features for the prediction model.
        """
        self.rtu_id = rtu_id
        self.num_inputs = num_inputs
        self.num_outputs = num_outputs
        self.load_models(prediction_model_path, clustering_model_path)

    def load_models(self, prediction_model_path, clustering_model_path):
        """
        Loads the prediction model and clustering model.

        Args:
            prediction_model_path (str): The file path to the prediction model.
            clustering_model_path (str): The file path to the clustering model.
        """
        self.model = load_model(prediction_model_path)
        self.kmeans_model = joblib.load(clustering_model_path)

    def initialize_lists(self, size=30):
        """
        Initialize lists for storing actual, predicted, and residual values.

        Args:
            size (int): Size of the lists.

        Returns:
            tuple: A tuple containing three lists initialized with zeros.
        """
        initial_values = [0] * size
        return initial_values.copy(), initial_values.copy(), initial_values.copy()

    def predict(self, df_new):
        """
        Makes predictions using the prediction model.

        Args:
            df_new (numpy.ndarray): The new data for prediction.

        Returns:
            numpy.ndarray: The predicted values.
        """
        return self.model.predict(df_new)

    def calculate_residuals(self, df_trans, pred):
        """
        Calculates the residuals between the actual values and the predicted values.

        Args:
            df_trans (numpy.ndarray): The transformed data.
            pred (numpy.ndarray): The predicted values.

        Returns:
            numpy.ndarray: The actual values.
            numpy.ndarray: The residuals.
        """
        actual = df_trans[30, : self.num_outputs]
        resid = actual - pred
        return actual, resid

    def calculate_distances(self, resid):
        """
        Calculate the distances between residuals and cluster centers.

        Args:
            resid (array): Residual values.

        Returns:
            array: Array of distances.
        """
        dist = []
        dist.append(np.linalg.norm(resid - self.kmeans_model.cluster_centers_[0]))

        return np.array(dist)

    def resize_prediction(self, pred, df_trans):
        """
        Resize the predicted values to match the shape of the transformed input data.

        Args:
            pred (array): Predicted values.
            df_trans (DataFrame): Transformed input data.

        Returns:
            array: Resized predicted values.
        """
        pred = np.resize(
            pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :]))
        )
        pred[:, -len(df_trans[30, self.num_outputs :]) :] = df_trans[
            30, self.num_outputs :
        ]
        return pred

    def inverse_transform(self, scaler, pred, df_trans):
        """
        Inverse transform the predicted and actual values.

        Args:
            scaler (object): Scaler object for inverse transformation.
            pred (array): Predicted values.
            df_trans (DataFrame): Transformed input data.

        Returns:
            tuple: A tuple containing the actual and predicted values after inverse transformation.
        """
        pred = scaler.inverse_transform(np.array(pred))
        actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
        return actual, pred

    def update_lists(self, actual_list, pred_list, resid_list, actual, pred, resid):
        """
        Update the lists of actual, predicted, and residual values.

        Args:
            actual_list (list): List of actual values.
            pred_list (list): List of predicted values.
            resid_list (list): List of residual values.
            actual (array): Actual values.
            pred (array): Predicted values.
            resid (array): Residual values.

        Returns:
            tuple: A tuple containing the updated lists of actual, predicted, and residual values.
        """
        actual_list.pop(0)
        pred_list.pop(0)
        resid_list.pop(0)
        actual_list.append(actual[0, 1])
        pred_list.append(pred[0, 1])
        resid_list.append(resid[0, 1])
        return actual_list, pred_list, resid_list

    def pipeline(self, df_new, df_trans, scaler):
        """
        Perform the anomaly detection pipeline.

        Args:
            df_new (DataFrame): Input data for prediction.
            df_trans (DataFrame): Transformed input data.
            scaler (object): Scaler object for inverse transformation.

        Returns:
            tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances.
        """
        actual_list, pred_list, resid_list = self.initialize_lists()
        pred = self.predict(df_new)
        actual, resid = self.calculate_residuals(df_trans, pred)
        pred = self.resize_prediction(pred, df_trans)
        actual, pred = self.inverse_transform(scaler, pred, df_trans)
        actual_list, pred_list, resid_list = self.update_lists(
            actual_list, pred_list, resid_list, actual, pred, resid
        )
        dist = self.calculate_distances(resid)
        return actual_list, pred_list, resid_list, dist