akshayballal commited on
Commit
e8d4213
1 Parent(s): 10e6dfd

Refactored VAV

Browse files
physLSTM/lstm_vav_01.keras ADDED
Binary file (658 kB). View file
 
physLSTM/lstm_vav_rtu1.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -17,7 +17,8 @@
17
  "from sklearn.model_selection import train_test_split\n",
18
  "from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
19
  "from keras.callbacks import ModelCheckpoint\n",
20
- "import tensorflow as tf"
 
21
  ]
22
  },
23
  {
@@ -31,46 +32,64 @@
31
  },
32
  {
33
  "cell_type": "code",
34
- "execution_count": 3,
35
  "metadata": {},
36
  "outputs": [],
37
  "source": [
38
- "zones = [69, 68,67, 66,65, 64, 42,41,40,39,38,37,36]\n",
39
- "rtus = [1]\n",
40
  "cols = []\n",
41
  "\n",
42
  "for zone in zones:\n",
43
- " for column in merged.columns:\n",
44
- " if f\"zone_0{zone}\" in column and 'co2' not in column and \"hw_valve\" not in column and \"cooling_sp\" not in column and \"heating_sp\" not in column:\n",
45
- " cols.append(column)\n",
 
 
 
 
 
 
 
46
  "\n",
47
- "for zone in zones:\n",
48
- " for column in merged.columns:\n",
49
- " if f\"zone_0{zone}\" in column: \n",
50
- " if \"cooling_sp\" in column or \"heating_sp\" in column:\n",
51
- " cols.append(column)\n",
52
  "# for rtu in rtus:\n",
53
  "# for column in merged.columns:\n",
54
- "# if f\"rtu_00{rtu}_fltrd_sa\" in column:\n",
55
  "# cols.append(column)\n",
56
- "cols =['date'] + cols + ['air_temp_set_1',\n",
57
- " 'air_temp_set_2',\n",
58
- " 'dew_point_temperature_set_1d',\n",
59
- " 'relative_humidity_set_1',\n",
60
- " 'solar_radiation_set_1']\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  "input_dataset = merged[cols]"
62
  ]
63
  },
64
  {
65
  "cell_type": "code",
66
- "execution_count": 4,
67
  "metadata": {},
68
  "outputs": [
69
  {
70
  "name": "stderr",
71
  "output_type": "stream",
72
  "text": [
73
- "C:\\Users\\arbal\\AppData\\Local\\Temp\\ipykernel_16740\\4293840618.py:1: SettingWithCopyWarning: \n",
74
  "A value is trying to be set on a copy of a slice from a DataFrame.\n",
75
  "Try using .loc[row_indexer,col_indexer] = value instead\n",
76
  "\n",
@@ -96,430 +115,7 @@
96
  },
97
  {
98
  "cell_type": "code",
99
- "execution_count": 5,
100
- "metadata": {},
101
- "outputs": [
102
- {
103
- "data": {
104
- "text/html": [
105
- "<div>\n",
106
- "<style scoped>\n",
107
- " .dataframe tbody tr th:only-of-type {\n",
108
- " vertical-align: middle;\n",
109
- " }\n",
110
- "\n",
111
- " .dataframe tbody tr th {\n",
112
- " vertical-align: top;\n",
113
- " }\n",
114
- "\n",
115
- " .dataframe thead th {\n",
116
- " text-align: right;\n",
117
- " }\n",
118
- "</style>\n",
119
- "<table border=\"1\" class=\"dataframe\">\n",
120
- " <thead>\n",
121
- " <tr style=\"text-align: right;\">\n",
122
- " <th></th>\n",
123
- " <th>date</th>\n",
124
- " <th>zone_069_temp</th>\n",
125
- " <th>zone_069_fan_spd</th>\n",
126
- " <th>zone_068_temp</th>\n",
127
- " <th>zone_068_fan_spd</th>\n",
128
- " <th>zone_067_temp</th>\n",
129
- " <th>zone_067_fan_spd</th>\n",
130
- " <th>zone_066_temp</th>\n",
131
- " <th>zone_066_fan_spd</th>\n",
132
- " <th>zone_042_temp</th>\n",
133
- " <th>...</th>\n",
134
- " <th>zone_038_heating_sp</th>\n",
135
- " <th>zone_037_cooling_sp</th>\n",
136
- " <th>zone_037_heating_sp</th>\n",
137
- " <th>zone_036_cooling_sp</th>\n",
138
- " <th>zone_036_heating_sp</th>\n",
139
- " <th>air_temp_set_1</th>\n",
140
- " <th>air_temp_set_2</th>\n",
141
- " <th>dew_point_temperature_set_1d</th>\n",
142
- " <th>relative_humidity_set_1</th>\n",
143
- " <th>solar_radiation_set_1</th>\n",
144
- " </tr>\n",
145
- " </thead>\n",
146
- " <tbody>\n",
147
- " <tr>\n",
148
- " <th>438785</th>\n",
149
- " <td>2019-01-08 20:55:00</td>\n",
150
- " <td>70.9</td>\n",
151
- " <td>NaN</td>\n",
152
- " <td>72.4</td>\n",
153
- " <td>20.0</td>\n",
154
- " <td>70.2</td>\n",
155
- " <td>NaN</td>\n",
156
- " <td>70.9</td>\n",
157
- " <td>NaN</td>\n",
158
- " <td>72.3</td>\n",
159
- " <td>...</td>\n",
160
- " <td>72.0</td>\n",
161
- " <td>73.0</td>\n",
162
- " <td>70.0</td>\n",
163
- " <td>75.0</td>\n",
164
- " <td>72.0</td>\n",
165
- " <td>12.850</td>\n",
166
- " <td>12.930</td>\n",
167
- " <td>9.10</td>\n",
168
- " <td>78.15</td>\n",
169
- " <td>48.7</td>\n",
170
- " </tr>\n",
171
- " <tr>\n",
172
- " <th>438786</th>\n",
173
- " <td>2019-01-08 20:56:00</td>\n",
174
- " <td>70.9</td>\n",
175
- " <td>NaN</td>\n",
176
- " <td>72.4</td>\n",
177
- " <td>20.0</td>\n",
178
- " <td>70.2</td>\n",
179
- " <td>NaN</td>\n",
180
- " <td>70.9</td>\n",
181
- " <td>NaN</td>\n",
182
- " <td>72.3</td>\n",
183
- " <td>...</td>\n",
184
- " <td>72.0</td>\n",
185
- " <td>73.0</td>\n",
186
- " <td>70.0</td>\n",
187
- " <td>75.0</td>\n",
188
- " <td>72.0</td>\n",
189
- " <td>12.850</td>\n",
190
- " <td>12.930</td>\n",
191
- " <td>9.10</td>\n",
192
- " <td>78.15</td>\n",
193
- " <td>48.7</td>\n",
194
- " </tr>\n",
195
- " <tr>\n",
196
- " <th>438787</th>\n",
197
- " <td>2019-01-08 20:57:00</td>\n",
198
- " <td>70.9</td>\n",
199
- " <td>NaN</td>\n",
200
- " <td>72.4</td>\n",
201
- " <td>20.0</td>\n",
202
- " <td>70.2</td>\n",
203
- " <td>NaN</td>\n",
204
- " <td>70.9</td>\n",
205
- " <td>NaN</td>\n",
206
- " <td>72.3</td>\n",
207
- " <td>...</td>\n",
208
- " <td>72.0</td>\n",
209
- " <td>73.0</td>\n",
210
- " <td>70.0</td>\n",
211
- " <td>75.0</td>\n",
212
- " <td>72.0</td>\n",
213
- " <td>12.850</td>\n",
214
- " <td>12.930</td>\n",
215
- " <td>9.10</td>\n",
216
- " <td>78.15</td>\n",
217
- " <td>48.7</td>\n",
218
- " </tr>\n",
219
- " <tr>\n",
220
- " <th>438788</th>\n",
221
- " <td>2019-01-08 20:58:00</td>\n",
222
- " <td>70.9</td>\n",
223
- " <td>NaN</td>\n",
224
- " <td>72.4</td>\n",
225
- " <td>20.0</td>\n",
226
- " <td>70.2</td>\n",
227
- " <td>NaN</td>\n",
228
- " <td>70.9</td>\n",
229
- " <td>NaN</td>\n",
230
- " <td>72.3</td>\n",
231
- " <td>...</td>\n",
232
- " <td>72.0</td>\n",
233
- " <td>73.0</td>\n",
234
- " <td>70.0</td>\n",
235
- " <td>75.0</td>\n",
236
- " <td>72.0</td>\n",
237
- " <td>12.850</td>\n",
238
- " <td>12.930</td>\n",
239
- " <td>9.10</td>\n",
240
- " <td>78.15</td>\n",
241
- " <td>48.7</td>\n",
242
- " </tr>\n",
243
- " <tr>\n",
244
- " <th>438789</th>\n",
245
- " <td>2019-01-08 20:59:00</td>\n",
246
- " <td>70.9</td>\n",
247
- " <td>NaN</td>\n",
248
- " <td>72.4</td>\n",
249
- " <td>20.0</td>\n",
250
- " <td>70.2</td>\n",
251
- " <td>NaN</td>\n",
252
- " <td>70.9</td>\n",
253
- " <td>NaN</td>\n",
254
- " <td>72.3</td>\n",
255
- " <td>...</td>\n",
256
- " <td>72.0</td>\n",
257
- " <td>73.0</td>\n",
258
- " <td>70.0</td>\n",
259
- " <td>75.0</td>\n",
260
- " <td>72.0</td>\n",
261
- " <td>12.850</td>\n",
262
- " <td>12.930</td>\n",
263
- " <td>9.10</td>\n",
264
- " <td>78.15</td>\n",
265
- " <td>48.7</td>\n",
266
- " </tr>\n",
267
- " <tr>\n",
268
- " <th>...</th>\n",
269
- " <td>...</td>\n",
270
- " <td>...</td>\n",
271
- " <td>...</td>\n",
272
- " <td>...</td>\n",
273
- " <td>...</td>\n",
274
- " <td>...</td>\n",
275
- " <td>...</td>\n",
276
- " <td>...</td>\n",
277
- " <td>...</td>\n",
278
- " <td>...</td>\n",
279
- " <td>...</td>\n",
280
- " <td>...</td>\n",
281
- " <td>...</td>\n",
282
- " <td>...</td>\n",
283
- " <td>...</td>\n",
284
- " <td>...</td>\n",
285
- " <td>...</td>\n",
286
- " <td>...</td>\n",
287
- " <td>...</td>\n",
288
- " <td>...</td>\n",
289
- " <td>...</td>\n",
290
- " </tr>\n",
291
- " <tr>\n",
292
- " <th>2072148</th>\n",
293
- " <td>2020-12-31 23:57:00</td>\n",
294
- " <td>68.8</td>\n",
295
- " <td>20.0</td>\n",
296
- " <td>71.7</td>\n",
297
- " <td>20.0</td>\n",
298
- " <td>70.4</td>\n",
299
- " <td>20.0</td>\n",
300
- " <td>68.6</td>\n",
301
- " <td>35.0</td>\n",
302
- " <td>71.4</td>\n",
303
- " <td>...</td>\n",
304
- " <td>71.0</td>\n",
305
- " <td>74.0</td>\n",
306
- " <td>68.0</td>\n",
307
- " <td>74.0</td>\n",
308
- " <td>68.0</td>\n",
309
- " <td>13.994</td>\n",
310
- " <td>13.528</td>\n",
311
- " <td>4.11</td>\n",
312
- " <td>51.61</td>\n",
313
- " <td>188.8</td>\n",
314
- " </tr>\n",
315
- " <tr>\n",
316
- " <th>2072149</th>\n",
317
- " <td>2020-12-31 23:58:00</td>\n",
318
- " <td>68.8</td>\n",
319
- " <td>20.0</td>\n",
320
- " <td>71.7</td>\n",
321
- " <td>20.0</td>\n",
322
- " <td>70.4</td>\n",
323
- " <td>20.0</td>\n",
324
- " <td>68.6</td>\n",
325
- " <td>35.0</td>\n",
326
- " <td>71.4</td>\n",
327
- " <td>...</td>\n",
328
- " <td>71.0</td>\n",
329
- " <td>74.0</td>\n",
330
- " <td>68.0</td>\n",
331
- " <td>74.0</td>\n",
332
- " <td>68.0</td>\n",
333
- " <td>13.994</td>\n",
334
- " <td>13.528</td>\n",
335
- " <td>4.11</td>\n",
336
- " <td>51.61</td>\n",
337
- " <td>188.8</td>\n",
338
- " </tr>\n",
339
- " <tr>\n",
340
- " <th>2072150</th>\n",
341
- " <td>2020-12-31 23:58:00</td>\n",
342
- " <td>68.8</td>\n",
343
- " <td>20.0</td>\n",
344
- " <td>71.7</td>\n",
345
- " <td>20.0</td>\n",
346
- " <td>70.4</td>\n",
347
- " <td>20.0</td>\n",
348
- " <td>68.6</td>\n",
349
- " <td>35.0</td>\n",
350
- " <td>71.4</td>\n",
351
- " <td>...</td>\n",
352
- " <td>71.0</td>\n",
353
- " <td>74.0</td>\n",
354
- " <td>68.0</td>\n",
355
- " <td>74.0</td>\n",
356
- " <td>68.0</td>\n",
357
- " <td>13.994</td>\n",
358
- " <td>13.528</td>\n",
359
- " <td>4.11</td>\n",
360
- " <td>51.61</td>\n",
361
- " <td>188.8</td>\n",
362
- " </tr>\n",
363
- " <tr>\n",
364
- " <th>2072151</th>\n",
365
- " <td>2020-12-31 23:59:00</td>\n",
366
- " <td>68.8</td>\n",
367
- " <td>20.0</td>\n",
368
- " <td>71.7</td>\n",
369
- " <td>20.0</td>\n",
370
- " <td>70.4</td>\n",
371
- " <td>20.0</td>\n",
372
- " <td>68.6</td>\n",
373
- " <td>35.0</td>\n",
374
- " <td>71.4</td>\n",
375
- " <td>...</td>\n",
376
- " <td>71.0</td>\n",
377
- " <td>74.0</td>\n",
378
- " <td>68.0</td>\n",
379
- " <td>74.0</td>\n",
380
- " <td>68.0</td>\n",
381
- " <td>13.994</td>\n",
382
- " <td>13.528</td>\n",
383
- " <td>4.11</td>\n",
384
- " <td>51.61</td>\n",
385
- " <td>188.8</td>\n",
386
- " </tr>\n",
387
- " <tr>\n",
388
- " <th>2072152</th>\n",
389
- " <td>2020-12-31 23:59:00</td>\n",
390
- " <td>68.8</td>\n",
391
- " <td>20.0</td>\n",
392
- " <td>71.7</td>\n",
393
- " <td>20.0</td>\n",
394
- " <td>70.4</td>\n",
395
- " <td>20.0</td>\n",
396
- " <td>68.6</td>\n",
397
- " <td>35.0</td>\n",
398
- " <td>71.4</td>\n",
399
- " <td>...</td>\n",
400
- " <td>71.0</td>\n",
401
- " <td>74.0</td>\n",
402
- " <td>68.0</td>\n",
403
- " <td>74.0</td>\n",
404
- " <td>68.0</td>\n",
405
- " <td>13.994</td>\n",
406
- " <td>13.528</td>\n",
407
- " <td>4.11</td>\n",
408
- " <td>51.61</td>\n",
409
- " <td>188.8</td>\n",
410
- " </tr>\n",
411
- " </tbody>\n",
412
- "</table>\n",
413
- "<p>1633368 rows × 46 columns</p>\n",
414
- "</div>"
415
- ],
416
- "text/plain": [
417
- " date zone_069_temp zone_069_fan_spd zone_068_temp \\\n",
418
- "438785 2019-01-08 20:55:00 70.9 NaN 72.4 \n",
419
- "438786 2019-01-08 20:56:00 70.9 NaN 72.4 \n",
420
- "438787 2019-01-08 20:57:00 70.9 NaN 72.4 \n",
421
- "438788 2019-01-08 20:58:00 70.9 NaN 72.4 \n",
422
- "438789 2019-01-08 20:59:00 70.9 NaN 72.4 \n",
423
- "... ... ... ... ... \n",
424
- "2072148 2020-12-31 23:57:00 68.8 20.0 71.7 \n",
425
- "2072149 2020-12-31 23:58:00 68.8 20.0 71.7 \n",
426
- "2072150 2020-12-31 23:58:00 68.8 20.0 71.7 \n",
427
- "2072151 2020-12-31 23:59:00 68.8 20.0 71.7 \n",
428
- "2072152 2020-12-31 23:59:00 68.8 20.0 71.7 \n",
429
- "\n",
430
- " zone_068_fan_spd zone_067_temp zone_067_fan_spd zone_066_temp \\\n",
431
- "438785 20.0 70.2 NaN 70.9 \n",
432
- "438786 20.0 70.2 NaN 70.9 \n",
433
- "438787 20.0 70.2 NaN 70.9 \n",
434
- "438788 20.0 70.2 NaN 70.9 \n",
435
- "438789 20.0 70.2 NaN 70.9 \n",
436
- "... ... ... ... ... \n",
437
- "2072148 20.0 70.4 20.0 68.6 \n",
438
- "2072149 20.0 70.4 20.0 68.6 \n",
439
- "2072150 20.0 70.4 20.0 68.6 \n",
440
- "2072151 20.0 70.4 20.0 68.6 \n",
441
- "2072152 20.0 70.4 20.0 68.6 \n",
442
- "\n",
443
- " zone_066_fan_spd zone_042_temp ... zone_038_heating_sp \\\n",
444
- "438785 NaN 72.3 ... 72.0 \n",
445
- "438786 NaN 72.3 ... 72.0 \n",
446
- "438787 NaN 72.3 ... 72.0 \n",
447
- "438788 NaN 72.3 ... 72.0 \n",
448
- "438789 NaN 72.3 ... 72.0 \n",
449
- "... ... ... ... ... \n",
450
- "2072148 35.0 71.4 ... 71.0 \n",
451
- "2072149 35.0 71.4 ... 71.0 \n",
452
- "2072150 35.0 71.4 ... 71.0 \n",
453
- "2072151 35.0 71.4 ... 71.0 \n",
454
- "2072152 35.0 71.4 ... 71.0 \n",
455
- "\n",
456
- " zone_037_cooling_sp zone_037_heating_sp zone_036_cooling_sp \\\n",
457
- "438785 73.0 70.0 75.0 \n",
458
- "438786 73.0 70.0 75.0 \n",
459
- "438787 73.0 70.0 75.0 \n",
460
- "438788 73.0 70.0 75.0 \n",
461
- "438789 73.0 70.0 75.0 \n",
462
- "... ... ... ... \n",
463
- "2072148 74.0 68.0 74.0 \n",
464
- "2072149 74.0 68.0 74.0 \n",
465
- "2072150 74.0 68.0 74.0 \n",
466
- "2072151 74.0 68.0 74.0 \n",
467
- "2072152 74.0 68.0 74.0 \n",
468
- "\n",
469
- " zone_036_heating_sp air_temp_set_1 air_temp_set_2 \\\n",
470
- "438785 72.0 12.850 12.930 \n",
471
- "438786 72.0 12.850 12.930 \n",
472
- "438787 72.0 12.850 12.930 \n",
473
- "438788 72.0 12.850 12.930 \n",
474
- "438789 72.0 12.850 12.930 \n",
475
- "... ... ... ... \n",
476
- "2072148 68.0 13.994 13.528 \n",
477
- "2072149 68.0 13.994 13.528 \n",
478
- "2072150 68.0 13.994 13.528 \n",
479
- "2072151 68.0 13.994 13.528 \n",
480
- "2072152 68.0 13.994 13.528 \n",
481
- "\n",
482
- " dew_point_temperature_set_1d relative_humidity_set_1 \\\n",
483
- "438785 9.10 78.15 \n",
484
- "438786 9.10 78.15 \n",
485
- "438787 9.10 78.15 \n",
486
- "438788 9.10 78.15 \n",
487
- "438789 9.10 78.15 \n",
488
- "... ... ... \n",
489
- "2072148 4.11 51.61 \n",
490
- "2072149 4.11 51.61 \n",
491
- "2072150 4.11 51.61 \n",
492
- "2072151 4.11 51.61 \n",
493
- "2072152 4.11 51.61 \n",
494
- "\n",
495
- " solar_radiation_set_1 \n",
496
- "438785 48.7 \n",
497
- "438786 48.7 \n",
498
- "438787 48.7 \n",
499
- "438788 48.7 \n",
500
- "438789 48.7 \n",
501
- "... ... \n",
502
- "2072148 188.8 \n",
503
- "2072149 188.8 \n",
504
- "2072150 188.8 \n",
505
- "2072151 188.8 \n",
506
- "2072152 188.8 \n",
507
- "\n",
508
- "[1633368 rows x 46 columns]"
509
- ]
510
- },
511
- "execution_count": 5,
512
- "metadata": {},
513
- "output_type": "execute_result"
514
- }
515
- ],
516
- "source": [
517
- "df_filtered"
518
- ]
519
- },
520
- {
521
- "cell_type": "code",
522
- "execution_count": 6,
523
  "metadata": {},
524
  "outputs": [
525
  {
@@ -528,7 +124,7 @@
528
  "[]"
529
  ]
530
  },
531
- "execution_count": 6,
532
  "metadata": {},
533
  "output_type": "execute_result"
534
  }
@@ -548,7 +144,7 @@
548
  },
549
  {
550
  "cell_type": "code",
551
- "execution_count": 7,
552
  "metadata": {},
553
  "outputs": [
554
  {
@@ -565,7 +161,7 @@
565
  },
566
  {
567
  "cell_type": "code",
568
- "execution_count": 8,
569
  "metadata": {},
570
  "outputs": [
571
  {
@@ -574,7 +170,7 @@
574
  "(1073512, 391818)"
575
  ]
576
  },
577
- "execution_count": 8,
578
  "metadata": {},
579
  "output_type": "execute_result"
580
  }
@@ -585,41 +181,34 @@
585
  },
586
  {
587
  "cell_type": "code",
588
- "execution_count": 9,
589
- "metadata": {},
590
- "outputs": [],
591
- "source": [
592
- "traindataset = traindataset.astype('float32')\n",
593
- "testdataset = testdataset.astype('float32')\n",
594
- "\n",
595
- "scaler = StandardScaler()\n",
596
- "traindataset = scaler.fit_transform(traindataset)\n",
597
- "testdataset = scaler.transform(testdataset)"
598
- ]
599
- },
600
- {
601
- "cell_type": "code",
602
- "execution_count": 10,
603
  "metadata": {},
604
  "outputs": [
605
  {
606
  "data": {
607
  "text/plain": [
608
- "(1073512, 45)"
609
  ]
610
  },
611
- "execution_count": 10,
612
  "metadata": {},
613
  "output_type": "execute_result"
614
  }
615
  ],
616
  "source": [
617
- "traindataset.shape"
 
 
 
 
 
 
 
618
  ]
619
  },
620
  {
621
  "cell_type": "code",
622
- "execution_count": 11,
623
  "metadata": {},
624
  "outputs": [],
625
  "source": [
@@ -630,7 +219,7 @@
630
  " Y = []\n",
631
  " for i in range(len(dataset) - time_step - 1):\n",
632
  " x.append(dataset[i:(i+time_step),:])\n",
633
- " Y.append(dataset[i+time_step,0:23])\n",
634
  " x= np.array(x)\n",
635
  " Y = np.array(Y)\n",
636
  " return x,Y\n",
@@ -642,16 +231,16 @@
642
  },
643
  {
644
  "cell_type": "code",
645
- "execution_count": 12,
646
  "metadata": {},
647
  "outputs": [
648
  {
649
  "data": {
650
  "text/plain": [
651
- "((1073481, 30, 45), (1073481, 23))"
652
  ]
653
  },
654
- "execution_count": 12,
655
  "metadata": {},
656
  "output_type": "execute_result"
657
  }
@@ -662,51 +251,19 @@
662
  },
663
  {
664
  "cell_type": "code",
665
- "execution_count": 13,
666
  "metadata": {},
667
  "outputs": [
668
  {
669
  "name": "stdout",
670
  "output_type": "stream",
671
  "text": [
672
- "Epoch 1/5\n",
673
- "8387/8387 [==============================] - ETA: 0s - loss: 0.0178\n",
674
- "Epoch 1: val_loss improved from inf to 0.42313, saving model to lstm_vav_01.tf\n",
675
- "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
676
- ]
677
- },
678
- {
679
- "name": "stderr",
680
- "output_type": "stream",
681
- "text": [
682
- "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
683
- ]
684
- },
685
- {
686
- "name": "stdout",
687
- "output_type": "stream",
688
- "text": [
689
- "8387/8387 [==============================] - 307s 36ms/step - loss: 0.0178 - val_loss: 0.4231\n",
690
- "Epoch 2/5\n",
691
- "8387/8387 [==============================] - ETA: 0s - loss: 0.0032\n",
692
- "Epoch 2: val_loss improved from 0.42313 to 0.40364, saving model to lstm_vav_01.tf\n",
693
- "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
694
- ]
695
- },
696
- {
697
- "name": "stderr",
698
- "output_type": "stream",
699
- "text": [
700
- "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
701
- ]
702
- },
703
- {
704
- "name": "stdout",
705
- "output_type": "stream",
706
- "text": [
707
- "8387/8387 [==============================] - 274s 33ms/step - loss: 0.0032 - val_loss: 0.4036\n",
708
- "Epoch 3/5\n",
709
- " 259/8387 [..............................] - ETA: 4:02 - loss: 0.0028"
710
  ]
711
  },
712
  {
@@ -716,17 +273,18 @@
716
  "traceback": [
717
  "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
718
  "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
719
- "Cell \u001b[1;32mIn[13], line 11\u001b[0m\n\u001b[0;32m 9\u001b[0m checkpoint_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlstm_vav_01.tf\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 10\u001b[0m checkpoint_callback \u001b[38;5;241m=\u001b[39m ModelCheckpoint(filepath\u001b[38;5;241m=\u001b[39mcheckpoint_path, monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, save_best_only\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmin\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m---> 11\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mX_test\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_test\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m128\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mcheckpoint_callback\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
720
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:65\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 63\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 65\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 66\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 67\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
721
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\keras\\src\\engine\\training.py:1742\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1734\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1735\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1736\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1739\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[0;32m 1740\u001b[0m ):\n\u001b[0;32m 1741\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1742\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1743\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1744\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n",
722
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
723
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:825\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 822\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 824\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 825\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 827\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 828\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n",
724
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:857\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 854\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 855\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 856\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 857\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_no_variable_creation_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 858\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 859\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 860\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 861\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n",
725
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compiler.py:148\u001b[0m, in \u001b[0;36mTracingCompiler.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 145\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 146\u001b[0m (concrete_function,\n\u001b[0;32m 147\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m--> 148\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mconcrete_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 149\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconcrete_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n",
726
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\monomorphic_function.py:1349\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs)\u001b[0m\n\u001b[0;32m 1345\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1346\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1347\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1348\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1349\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1350\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1351\u001b[0m args,\n\u001b[0;32m 1352\u001b[0m possible_gradient_type,\n\u001b[0;32m 1353\u001b[0m executing_eagerly)\n\u001b[0;32m 1354\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n",
727
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:196\u001b[0m, in \u001b[0;36mAtomicFunction.__call__\u001b[1;34m(self, *args)\u001b[0m\n\u001b[0;32m 194\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m record\u001b[38;5;241m.\u001b[39mstop_recording():\n\u001b[0;32m 195\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mexecuting_eagerly():\n\u001b[1;32m--> 196\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_bound_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 199\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunction_type\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflat_outputs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 200\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 201\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 202\u001b[0m outputs \u001b[38;5;241m=\u001b[39m make_call_op_in_graph(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28mlist\u001b[39m(args))\n",
728
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\tensorflow\\python\\eager\\context.py:1457\u001b[0m, in \u001b[0;36mContext.call_function\u001b[1;34m(self, name, tensor_inputs, num_outputs)\u001b[0m\n\u001b[0;32m 1455\u001b[0m cancellation_context \u001b[38;5;241m=\u001b[39m cancellation\u001b[38;5;241m.\u001b[39mcontext()\n\u001b[0;32m 1456\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1457\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1458\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1459\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1460\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtensor_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1461\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1462\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1463\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1464\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1465\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 1466\u001b[0m name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m 1467\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1471\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_context,\n\u001b[0;32m 1472\u001b[0m )\n",
729
- "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py:53\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 52\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 53\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
 
730
  "\u001b[1;31mKeyboardInterrupt\u001b[0m: "
731
  ]
732
  }
@@ -741,41 +299,30 @@
741
  "\n",
742
  "model.compile(optimizer='adam', loss='mean_squared_error')\n",
743
  "\n",
744
- "checkpoint_path = \"lstm_vav_01.tf\"\n",
745
  "checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
746
- "model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=128, verbose=1, callbacks=[checkpoint_callback])"
747
  ]
748
  },
749
  {
750
  "cell_type": "code",
751
- "execution_count": 14,
752
  "metadata": {},
753
- "outputs": [
754
- {
755
- "data": {
756
- "text/plain": [
757
- "<tensorflow.python.checkpoint.checkpoint.CheckpointLoadStatus at 0x2a4b2344610>"
758
- ]
759
- },
760
- "execution_count": 14,
761
- "metadata": {},
762
- "output_type": "execute_result"
763
- }
764
- ],
765
  "source": [
766
  "model.load_weights(checkpoint_path)"
767
  ]
768
  },
769
  {
770
  "cell_type": "code",
771
- "execution_count": 15,
772
  "metadata": {},
773
  "outputs": [
774
  {
775
  "name": "stdout",
776
  "output_type": "stream",
777
  "text": [
778
- "12244/12244 [==============================] - 58s 5ms/step\n"
779
  ]
780
  }
781
  ],
@@ -785,52 +332,91 @@
785
  },
786
  {
787
  "cell_type": "code",
788
- "execution_count": 16,
789
  "metadata": {},
790
  "outputs": [
791
  {
792
  "data": {
793
  "text/plain": [
794
- "Index(['date', 'zone_069_temp', 'zone_069_fan_spd', 'zone_068_temp',\n",
795
- " 'zone_068_fan_spd', 'zone_067_temp', 'zone_067_fan_spd',\n",
796
- " 'zone_066_temp', 'zone_066_fan_spd', 'zone_042_temp',\n",
797
- " 'zone_042_fan_spd', 'zone_041_temp', 'zone_041_fan_spd',\n",
798
- " 'zone_040_temp', 'zone_040_fan_spd', 'zone_039_temp',\n",
799
- " 'zone_039_fan_spd', 'zone_038_temp', 'zone_038_fan_spd',\n",
800
- " 'zone_037_temp', 'zone_037_fan_spd', 'zone_036_temp',\n",
801
- " 'zone_036_fan_spd', 'zone_069_cooling_sp', 'zone_069_heating_sp',\n",
802
- " 'zone_067_cooling_sp', 'zone_067_heating_sp', 'zone_066_cooling_sp',\n",
803
- " 'zone_066_heating_sp', 'zone_042_cooling_sp', 'zone_042_heating_sp',\n",
804
- " 'zone_041_cooling_sp', 'zone_041_heating_sp', 'zone_039_cooling_sp',\n",
805
- " 'zone_039_heating_sp', 'zone_038_cooling_sp', 'zone_038_heating_sp',\n",
806
- " 'zone_037_cooling_sp', 'zone_037_heating_sp', 'zone_036_cooling_sp',\n",
807
- " 'zone_036_heating_sp', 'air_temp_set_1', 'air_temp_set_2',\n",
808
- " 'dew_point_temperature_set_1d', 'relative_humidity_set_1',\n",
809
- " 'solar_radiation_set_1'],\n",
810
- " dtype='object')"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811
  ]
812
  },
813
- "execution_count": 16,
814
  "metadata": {},
815
  "output_type": "execute_result"
816
  }
817
  ],
818
  "source": [
819
- "traindataset_df.columns"
 
820
  ]
821
  },
822
  {
823
  "cell_type": "code",
824
- "execution_count": 37,
825
  "metadata": {},
826
  "outputs": [],
827
  "source": [
828
  "%matplotlib qt\n",
829
  "plt.figure()\n",
830
- "var = 1\n",
831
  "plt.plot(y_test[:,var], label='Original Testing Data', color='blue')\n",
832
  "plt.plot(test_predict1[:,var], label='Predicted Testing Data', color='red',alpha=0.8)\n",
833
- "anomalies = np.where(abs(test_predict1[:,var] - y_test[:,var]) > 0.38)\n",
834
  "plt.scatter(anomalies,test_predict1[anomalies,var], color='black',marker =\"o\",s=100 )\n",
835
  "\n",
836
  "\n",
@@ -881,9 +467,20 @@
881
  },
882
  {
883
  "cell_type": "code",
884
- "execution_count": null,
885
  "metadata": {},
886
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
887
  "source": [
888
  "from sklearn.cluster import KMeans\n",
889
  "import numpy as np\n",
@@ -894,7 +491,7 @@
894
  "np.random.seed(0)\n",
895
  "X = (test_predict1 - y_test)\n",
896
  "\n",
897
- "k = 6\n",
898
  "\n",
899
  "kmeans = KMeans(n_clusters=k)\n",
900
  "\n",
@@ -917,7 +514,9 @@
917
  "plt.title('KMeans Clustering')\n",
918
  "plt.xlabel('Feature 1')\n",
919
  "plt.ylabel('Feature 2')\n",
920
- "plt.show()\n"
 
 
921
  ]
922
  },
923
  {
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 35,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
17
  "from sklearn.model_selection import train_test_split\n",
18
  "from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
19
  "from keras.callbacks import ModelCheckpoint\n",
20
+ "import tensorflow as tf\n",
21
+ "import joblib"
22
  ]
23
  },
24
  {
 
32
  },
33
  {
34
  "cell_type": "code",
35
+ "execution_count": 31,
36
  "metadata": {},
37
  "outputs": [],
38
  "source": [
39
+ "zones = [69, 68, 67, 66, 65, 64, 42, 41, 40, 39, 38, 37, 36]\n",
40
+ "rtu = 1\n",
41
  "cols = []\n",
42
  "\n",
43
  "for zone in zones:\n",
44
+ " for column in merged.columns:\n",
45
+ " if (\n",
46
+ " f\"zone_0{zone}\" in column\n",
47
+ " and \"co2\" not in column\n",
48
+ " and \"hw_valve\" not in column\n",
49
+ " and \"cooling_sp\" not in column\n",
50
+ " and \"heating_sp\" not in column\n",
51
+ " ):\n",
52
+ " cols.append(column)\n",
53
+ "\n",
54
  "\n",
 
 
 
 
 
55
  "# for rtu in rtus:\n",
56
  "# for column in merged.columns:\n",
57
+ "# if f\"rtu_00{rtu}_fltrd_sa\" or f\"rtu_00{rtu}_sa_temp\" in column:\n",
58
  "# cols.append(column)\n",
59
+ "\n",
60
+ "cols = (\n",
61
+ " [\"date\"]\n",
62
+ " + cols\n",
63
+ " + [\n",
64
+ " f\"rtu_00{rtu}_fltrd_sa_flow_tn\",\n",
65
+ " f\"rtu_00{rtu}_sa_temp\", \n",
66
+ " \"air_temp_set_1\",\n",
67
+ " \"air_temp_set_2\",\n",
68
+ " \"dew_point_temperature_set_1d\",\n",
69
+ " \"relative_humidity_set_1\",\n",
70
+ " \"solar_radiation_set_1\",\n",
71
+ " ]\n",
72
+ ")\n",
73
+ "\n",
74
+ "for zone in zones:\n",
75
+ " for column in merged.columns:\n",
76
+ " if f\"zone_0{zone}\" in column:\n",
77
+ " if \"cooling_sp\" in column or \"heating_sp\" in column:\n",
78
+ " cols.append(column)\n",
79
+ " \n",
80
  "input_dataset = merged[cols]"
81
  ]
82
  },
83
  {
84
  "cell_type": "code",
85
+ "execution_count": 32,
86
  "metadata": {},
87
  "outputs": [
88
  {
89
  "name": "stderr",
90
  "output_type": "stream",
91
  "text": [
92
+ "C:\\Users\\arbal\\AppData\\Local\\Temp\\ipykernel_29192\\4293840618.py:1: SettingWithCopyWarning: \n",
93
  "A value is trying to be set on a copy of a slice from a DataFrame.\n",
94
  "Try using .loc[row_indexer,col_indexer] = value instead\n",
95
  "\n",
 
115
  },
116
  {
117
  "cell_type": "code",
118
+ "execution_count": 36,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  "metadata": {},
120
  "outputs": [
121
  {
 
124
  "[]"
125
  ]
126
  },
127
+ "execution_count": 36,
128
  "metadata": {},
129
  "output_type": "execute_result"
130
  }
 
144
  },
145
  {
146
  "cell_type": "code",
147
+ "execution_count": 37,
148
  "metadata": {},
149
  "outputs": [
150
  {
 
161
  },
162
  {
163
  "cell_type": "code",
164
+ "execution_count": 38,
165
  "metadata": {},
166
  "outputs": [
167
  {
 
170
  "(1073512, 391818)"
171
  ]
172
  },
173
+ "execution_count": 38,
174
  "metadata": {},
175
  "output_type": "execute_result"
176
  }
 
181
  },
182
  {
183
  "cell_type": "code",
184
+ "execution_count": 39,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  "metadata": {},
186
  "outputs": [
187
  {
188
  "data": {
189
  "text/plain": [
190
+ "['scaler_vav_1.pkl']"
191
  ]
192
  },
193
+ "execution_count": 39,
194
  "metadata": {},
195
  "output_type": "execute_result"
196
  }
197
  ],
198
  "source": [
199
+ "traindataset = traindataset.astype('float32')\n",
200
+ "testdataset = testdataset.astype('float32')\n",
201
+ "\n",
202
+ "scaler = StandardScaler()\n",
203
+ "traindataset = scaler.fit_transform(traindataset)\n",
204
+ "testdataset = scaler.transform(testdataset)\n",
205
+ "\n",
206
+ "joblib.dump(scaler, 'scaler_vav_1.pkl')"
207
  ]
208
  },
209
  {
210
  "cell_type": "code",
211
+ "execution_count": 51,
212
  "metadata": {},
213
  "outputs": [],
214
  "source": [
 
219
  " Y = []\n",
220
  " for i in range(len(dataset) - time_step - 1):\n",
221
  " x.append(dataset[i:(i+time_step),:])\n",
222
+ " Y.append(dataset[i+time_step,0:26])\n",
223
  " x= np.array(x)\n",
224
  " Y = np.array(Y)\n",
225
  " return x,Y\n",
 
231
  },
232
  {
233
  "cell_type": "code",
234
+ "execution_count": 52,
235
  "metadata": {},
236
  "outputs": [
237
  {
238
  "data": {
239
  "text/plain": [
240
+ "((1073481, 30, 55), (1073481, 26))"
241
  ]
242
  },
243
+ "execution_count": 52,
244
  "metadata": {},
245
  "output_type": "execute_result"
246
  }
 
251
  },
252
  {
253
  "cell_type": "code",
254
+ "execution_count": 54,
255
  "metadata": {},
256
  "outputs": [
257
  {
258
  "name": "stdout",
259
  "output_type": "stream",
260
  "text": [
261
+ "Epoch 1/3\n",
262
+ "\u001b[1m8387/8387\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0696\n",
263
+ "Epoch 1: val_loss improved from inf to 0.65445, saving model to lstm_vav_01.keras\n",
264
+ "\u001b[1m8387/8387\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m589s\u001b[0m 69ms/step - loss: 0.0696 - val_loss: 0.6544\n",
265
+ "Epoch 2/3\n",
266
+ "\u001b[1m 449/8387\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m7:16\u001b[0m 55ms/step - loss: 0.0033"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
  ]
268
  },
269
  {
 
273
  "traceback": [
274
  "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
275
  "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
276
+ "Cell \u001b[1;32mIn[54], line 11\u001b[0m\n\u001b[0;32m 9\u001b[0m checkpoint_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlstm_vav_01.keras\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 10\u001b[0m checkpoint_callback \u001b[38;5;241m=\u001b[39m ModelCheckpoint(filepath\u001b[38;5;241m=\u001b[39mcheckpoint_path, monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, save_best_only\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmin\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m---> 11\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mX_test\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_test\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m128\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mcheckpoint_callback\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
277
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
278
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:314\u001b[0m, in \u001b[0;36mTensorFlowTrainer.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001b[0m\n\u001b[0;32m 312\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, iterator \u001b[38;5;129;01min\u001b[39;00m epoch_iterator\u001b[38;5;241m.\u001b[39menumerate_epoch():\n\u001b[0;32m 313\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m--> 314\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 315\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pythonify_logs(logs)\n\u001b[0;32m 316\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_end(step, logs)\n",
279
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
280
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n",
281
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:878\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 875\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 876\u001b[0m \u001b[38;5;66;03m# In this case we have not created variables on the first call. So we can\u001b[39;00m\n\u001b[0;32m 877\u001b[0m \u001b[38;5;66;03m# run the first trace but we should fail if variables are created.\u001b[39;00m\n\u001b[1;32m--> 878\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 880\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 881\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_created_variables:\n\u001b[0;32m 882\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreating variables on a non-first call to a function\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 883\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m decorated with tf.function.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
282
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:139\u001b[0m, in \u001b[0;36mcall_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 137\u001b[0m bound_args \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 138\u001b[0m flat_inputs \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39munpack_inputs(bound_args)\n\u001b[1;32m--> 139\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mflat_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\n\u001b[0;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
283
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\concrete_function.py:1322\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, tensor_inputs, captured_inputs)\u001b[0m\n\u001b[0;32m 1318\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1320\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1321\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1322\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_preflattened\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1323\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1324\u001b[0m args,\n\u001b[0;32m 1325\u001b[0m possible_gradient_type,\n\u001b[0;32m 1326\u001b[0m executing_eagerly)\n\u001b[0;32m 1327\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n",
284
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:216\u001b[0m, in \u001b[0;36mAtomicFunction.call_preflattened\u001b[1;34m(self, args)\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall_preflattened\u001b[39m(\u001b[38;5;28mself\u001b[39m, args: Sequence[core\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[0;32m 215\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 216\u001b[0m flat_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 217\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mpack_output(flat_outputs)\n",
285
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:251\u001b[0m, in \u001b[0;36mAtomicFunction.call_flat\u001b[1;34m(self, *args)\u001b[0m\n\u001b[0;32m 249\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m record\u001b[38;5;241m.\u001b[39mstop_recording():\n\u001b[0;32m 250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mexecuting_eagerly():\n\u001b[1;32m--> 251\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_bound_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunction_type\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflat_outputs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 256\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 257\u001b[0m outputs \u001b[38;5;241m=\u001b[39m make_call_op_in_graph(\n\u001b[0;32m 258\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 259\u001b[0m \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[0;32m 260\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mfunction_call_options\u001b[38;5;241m.\u001b[39mas_attrs(),\n\u001b[0;32m 261\u001b[0m )\n",
286
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\context.py:1500\u001b[0m, in \u001b[0;36mContext.call_function\u001b[1;34m(self, name, tensor_inputs, num_outputs)\u001b[0m\n\u001b[0;32m 1498\u001b[0m cancellation_context \u001b[38;5;241m=\u001b[39m cancellation\u001b[38;5;241m.\u001b[39mcontext()\n\u001b[0;32m 1499\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1500\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1501\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1502\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1503\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtensor_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1504\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1505\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1506\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1507\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1508\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 1509\u001b[0m name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m 1510\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1514\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_context,\n\u001b[0;32m 1515\u001b[0m )\n",
287
+ "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py:53\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 52\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 53\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
288
  "\u001b[1;31mKeyboardInterrupt\u001b[0m: "
289
  ]
290
  }
 
299
  "\n",
300
  "model.compile(optimizer='adam', loss='mean_squared_error')\n",
301
  "\n",
302
+ "checkpoint_path = \"lstm_vav_01.keras\"\n",
303
  "checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
304
+ "model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3, batch_size=128, verbose=1, callbacks=[checkpoint_callback])"
305
  ]
306
  },
307
  {
308
  "cell_type": "code",
309
+ "execution_count": 55,
310
  "metadata": {},
311
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
312
  "source": [
313
  "model.load_weights(checkpoint_path)"
314
  ]
315
  },
316
  {
317
  "cell_type": "code",
318
+ "execution_count": 56,
319
  "metadata": {},
320
  "outputs": [
321
  {
322
  "name": "stdout",
323
  "output_type": "stream",
324
  "text": [
325
+ "\u001b[1m12244/12244\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m110s\u001b[0m 9ms/step\n"
326
  ]
327
  }
328
  ],
 
332
  },
333
  {
334
  "cell_type": "code",
335
+ "execution_count": 60,
336
  "metadata": {},
337
  "outputs": [
338
  {
339
  "data": {
340
  "text/plain": [
341
+ "{0: 'zone_069_temp',\n",
342
+ " 1: 'zone_069_fan_spd',\n",
343
+ " 2: 'zone_068_temp',\n",
344
+ " 3: 'zone_068_fan_spd',\n",
345
+ " 4: 'zone_067_temp',\n",
346
+ " 5: 'zone_067_fan_spd',\n",
347
+ " 6: 'zone_066_temp',\n",
348
+ " 7: 'zone_066_fan_spd',\n",
349
+ " 8: 'zone_065_temp',\n",
350
+ " 9: 'zone_065_fan_spd',\n",
351
+ " 10: 'zone_064_temp',\n",
352
+ " 11: 'zone_064_fan_spd',\n",
353
+ " 12: 'zone_042_temp',\n",
354
+ " 13: 'zone_042_fan_spd',\n",
355
+ " 14: 'zone_041_temp',\n",
356
+ " 15: 'zone_041_fan_spd',\n",
357
+ " 16: 'zone_040_temp',\n",
358
+ " 17: 'zone_040_fan_spd',\n",
359
+ " 18: 'zone_039_temp',\n",
360
+ " 19: 'zone_039_fan_spd',\n",
361
+ " 20: 'zone_038_temp',\n",
362
+ " 21: 'zone_038_fan_spd',\n",
363
+ " 22: 'zone_037_temp',\n",
364
+ " 23: 'zone_037_fan_spd',\n",
365
+ " 24: 'zone_036_temp',\n",
366
+ " 25: 'zone_036_fan_spd',\n",
367
+ " 26: 'rtu_001_fltrd_sa_flow_tn',\n",
368
+ " 27: 'rtu_001_sa_temp',\n",
369
+ " 28: 'air_temp_set_1',\n",
370
+ " 29: 'air_temp_set_2',\n",
371
+ " 30: 'dew_point_temperature_set_1d',\n",
372
+ " 31: 'relative_humidity_set_1',\n",
373
+ " 32: 'solar_radiation_set_1',\n",
374
+ " 33: 'zone_069_cooling_sp',\n",
375
+ " 34: 'zone_069_heating_sp',\n",
376
+ " 35: 'zone_067_cooling_sp',\n",
377
+ " 36: 'zone_067_heating_sp',\n",
378
+ " 37: 'zone_066_cooling_sp',\n",
379
+ " 38: 'zone_066_heating_sp',\n",
380
+ " 39: 'zone_065_cooling_sp',\n",
381
+ " 40: 'zone_065_heating_sp',\n",
382
+ " 41: 'zone_064_cooling_sp',\n",
383
+ " 42: 'zone_064_heating_sp',\n",
384
+ " 43: 'zone_042_cooling_sp',\n",
385
+ " 44: 'zone_042_heating_sp',\n",
386
+ " 45: 'zone_041_cooling_sp',\n",
387
+ " 46: 'zone_041_heating_sp',\n",
388
+ " 47: 'zone_039_cooling_sp',\n",
389
+ " 48: 'zone_039_heating_sp',\n",
390
+ " 49: 'zone_038_cooling_sp',\n",
391
+ " 50: 'zone_038_heating_sp',\n",
392
+ " 51: 'zone_037_cooling_sp',\n",
393
+ " 52: 'zone_037_heating_sp',\n",
394
+ " 53: 'zone_036_cooling_sp',\n",
395
+ " 54: 'zone_036_heating_sp'}"
396
  ]
397
  },
398
+ "execution_count": 60,
399
  "metadata": {},
400
  "output_type": "execute_result"
401
  }
402
  ],
403
  "source": [
404
+ "idx_to_col = {i:col for i,col in enumerate(traindataset_df.drop(columns = ['date']).columns)}\n",
405
+ "idx_to_col"
406
  ]
407
  },
408
  {
409
  "cell_type": "code",
410
+ "execution_count": 84,
411
  "metadata": {},
412
  "outputs": [],
413
  "source": [
414
  "%matplotlib qt\n",
415
  "plt.figure()\n",
416
+ "var = 10\n",
417
  "plt.plot(y_test[:,var], label='Original Testing Data', color='blue')\n",
418
  "plt.plot(test_predict1[:,var], label='Predicted Testing Data', color='red',alpha=0.8)\n",
419
+ "anomalies = np.where(abs(test_predict1[:,var] - y_test[:,var]) > 0.5)\n",
420
  "plt.scatter(anomalies,test_predict1[anomalies,var], color='black',marker =\"o\",s=100 )\n",
421
  "\n",
422
  "\n",
 
467
  },
468
  {
469
  "cell_type": "code",
470
+ "execution_count": 86,
471
  "metadata": {},
472
+ "outputs": [
473
+ {
474
+ "data": {
475
+ "text/plain": [
476
+ "['kmeans_vav_1.pkl']"
477
+ ]
478
+ },
479
+ "execution_count": 86,
480
+ "metadata": {},
481
+ "output_type": "execute_result"
482
+ }
483
+ ],
484
  "source": [
485
  "from sklearn.cluster import KMeans\n",
486
  "import numpy as np\n",
 
491
  "np.random.seed(0)\n",
492
  "X = (test_predict1 - y_test)\n",
493
  "\n",
494
+ "k = 2\n",
495
  "\n",
496
  "kmeans = KMeans(n_clusters=k)\n",
497
  "\n",
 
514
  "plt.title('KMeans Clustering')\n",
515
  "plt.xlabel('Feature 1')\n",
516
  "plt.ylabel('Feature 2')\n",
517
+ "plt.show()\n",
518
+ "\n",
519
+ "joblib.dump(kmeans, 'kmeans_vav_1.pkl')"
520
  ]
521
  },
522
  {
src/main.py CHANGED
@@ -1,6 +1,7 @@
1
  import json
2
  from rtu.RTUAnomalizer import RTUAnomalizer
3
  from rtu.RTUPipeline import RTUPipeline
 
4
  import paho.mqtt.client as mqtt
5
 
6
 
@@ -19,6 +20,12 @@ def main():
19
  num_outputs=rtu_data_pipeline.num_outputs,
20
  )
21
 
 
 
 
 
 
 
22
  def on_message(client, userdata, message):
23
  # print(json.loads(message.payload.decode()))
24
  df_new, df_trans = rtu_data_pipeline.fit(message)
 
1
  import json
2
  from rtu.RTUAnomalizer import RTUAnomalizer
3
  from rtu.RTUPipeline import RTUPipeline
4
+ from vav.VAVPipeline import VAVPipeline
5
  import paho.mqtt.client as mqtt
6
 
7
 
 
20
  num_outputs=rtu_data_pipeline.num_outputs,
21
  )
22
 
23
+ # vav_pipeline = VAVPipeline(rtu_id=1)
24
+
25
+ # print(vav_pipeline.input_col_names)
26
+
27
+ # print(len(vav_pipeline.output_col_names))
28
+
29
  def on_message(client, userdata, message):
30
  # print(json.loads(message.payload.decode()))
31
  df_new, df_trans = rtu_data_pipeline.fit(message)
src/rtu/RTUAnomalizer.py CHANGED
@@ -4,6 +4,10 @@ import joblib
4
 
5
 
6
  class RTUAnomalizer:
 
 
 
 
7
  model = None
8
  kmeans_models = []
9
 
@@ -14,31 +18,84 @@ class RTUAnomalizer:
14
  num_inputs=None,
15
  num_outputs=None,
16
  ):
 
 
17
 
 
 
 
 
 
 
18
  self.num_inputs = num_inputs
19
  self.num_outputs = num_outputs
20
- if not prediction_model_path is None and not clustering_model_paths is None:
21
  self.load_models(prediction_model_path, clustering_model_paths)
22
 
23
  def initialize_lists(self, size=30):
 
 
 
 
 
 
 
 
 
24
  initial_values = [0] * size
25
  return initial_values.copy(), initial_values.copy(), initial_values.copy()
26
 
27
  def load_models(self, prediction_model_path, clustering_model_paths):
 
 
 
 
 
 
 
28
  self.model = load_model(prediction_model_path)
29
 
30
  for path in clustering_model_paths:
31
  self.kmeans_models.append(joblib.load(path))
32
 
33
  def predict(self, df_new):
 
 
 
 
 
 
 
 
 
34
  return self.model.predict(df_new)
35
 
36
  def calculate_residuals(self, df_trans, pred):
 
 
 
 
 
 
 
 
 
 
37
  actual = df_trans[30, : self.num_outputs]
38
  resid = actual - pred
39
  return actual, resid
40
 
41
  def resize_prediction(self, pred, df_trans):
 
 
 
 
 
 
 
 
 
 
42
  pred = np.resize(
43
  pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :]))
44
  )
@@ -48,11 +105,36 @@ class RTUAnomalizer:
48
  return pred
49
 
50
  def inverse_transform(self, scaler, pred, df_trans):
 
 
 
 
 
 
 
 
 
 
 
51
  pred = scaler.inverse_transform(np.array(pred))
52
  actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
53
  return actual, pred
54
 
55
  def update_lists(self, actual_list, pred_list, resid_list, actual, pred, resid):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  actual_list.pop(0)
57
  pred_list.pop(0)
58
  resid_list.pop(0)
@@ -62,6 +144,15 @@ class RTUAnomalizer:
62
  return actual_list, pred_list, resid_list
63
 
64
  def calculate_distances(self, resid):
 
 
 
 
 
 
 
 
 
65
  dist = []
66
  for i, model in enumerate(self.kmeans_models):
67
  dist.append(
@@ -75,6 +166,17 @@ class RTUAnomalizer:
75
  return np.array(dist)
76
 
77
  def pipeline(self, df_new, df_trans, scaler):
 
 
 
 
 
 
 
 
 
 
 
78
  actual_list, pred_list, resid_list = self.initialize_lists()
79
  pred = self.predict(df_new)
80
  actual, resid = self.calculate_residuals(df_trans, pred)
 
4
 
5
 
6
  class RTUAnomalizer:
7
+ """
8
+ Class for performing anomaly detection on RTU (Roof Top Unit) data.
9
+ """
10
+
11
  model = None
12
  kmeans_models = []
13
 
 
18
  num_inputs=None,
19
  num_outputs=None,
20
  ):
21
+ """
22
+ Initialize the RTUAnomalizer object.
23
 
24
+ Args:
25
+ prediction_model_path (str): Path to the prediction model file.
26
+ clustering_model_paths (list): List of paths to the clustering model files.
27
+ num_inputs (int): Number of input features.
28
+ num_outputs (int): Number of output features.
29
+ """
30
  self.num_inputs = num_inputs
31
  self.num_outputs = num_outputs
32
+ if prediction_model_path is not None and clustering_model_paths is not None:
33
  self.load_models(prediction_model_path, clustering_model_paths)
34
 
35
  def initialize_lists(self, size=30):
36
+ """
37
+ Initialize lists for storing actual, predicted, and residual values.
38
+
39
+ Args:
40
+ size (int): Size of the lists.
41
+
42
+ Returns:
43
+ tuple: A tuple containing three lists initialized with zeros.
44
+ """
45
  initial_values = [0] * size
46
  return initial_values.copy(), initial_values.copy(), initial_values.copy()
47
 
48
  def load_models(self, prediction_model_path, clustering_model_paths):
49
+ """
50
+ Load the prediction and clustering models.
51
+
52
+ Args:
53
+ prediction_model_path (str): Path to the prediction model file.
54
+ clustering_model_paths (list): List of paths to the clustering model files.
55
+ """
56
  self.model = load_model(prediction_model_path)
57
 
58
  for path in clustering_model_paths:
59
  self.kmeans_models.append(joblib.load(path))
60
 
61
  def predict(self, df_new):
62
+ """
63
+ Make predictions using the prediction model.
64
+
65
+ Args:
66
+ df_new (DataFrame): Input data for prediction.
67
+
68
+ Returns:
69
+ array: Predicted values.
70
+ """
71
  return self.model.predict(df_new)
72
 
73
  def calculate_residuals(self, df_trans, pred):
74
+ """
75
+ Calculate the residuals between actual and predicted values.
76
+
77
+ Args:
78
+ df_trans (DataFrame): Transformed input data.
79
+ pred (array): Predicted values.
80
+
81
+ Returns:
82
+ tuple: A tuple containing the actual values and residuals.
83
+ """
84
  actual = df_trans[30, : self.num_outputs]
85
  resid = actual - pred
86
  return actual, resid
87
 
88
  def resize_prediction(self, pred, df_trans):
89
+ """
90
+ Resize the predicted values to match the shape of the transformed input data.
91
+
92
+ Args:
93
+ pred (array): Predicted values.
94
+ df_trans (DataFrame): Transformed input data.
95
+
96
+ Returns:
97
+ array: Resized predicted values.
98
+ """
99
  pred = np.resize(
100
  pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :]))
101
  )
 
105
  return pred
106
 
107
  def inverse_transform(self, scaler, pred, df_trans):
108
+ """
109
+ Inverse transform the predicted and actual values.
110
+
111
+ Args:
112
+ scaler (object): Scaler object for inverse transformation.
113
+ pred (array): Predicted values.
114
+ df_trans (DataFrame): Transformed input data.
115
+
116
+ Returns:
117
+ tuple: A tuple containing the actual and predicted values after inverse transformation.
118
+ """
119
  pred = scaler.inverse_transform(np.array(pred))
120
  actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
121
  return actual, pred
122
 
123
  def update_lists(self, actual_list, pred_list, resid_list, actual, pred, resid):
124
+ """
125
+ Update the lists of actual, predicted, and residual values.
126
+
127
+ Args:
128
+ actual_list (list): List of actual values.
129
+ pred_list (list): List of predicted values.
130
+ resid_list (list): List of residual values.
131
+ actual (array): Actual values.
132
+ pred (array): Predicted values.
133
+ resid (array): Residual values.
134
+
135
+ Returns:
136
+ tuple: A tuple containing the updated lists of actual, predicted, and residual values.
137
+ """
138
  actual_list.pop(0)
139
  pred_list.pop(0)
140
  resid_list.pop(0)
 
144
  return actual_list, pred_list, resid_list
145
 
146
  def calculate_distances(self, resid):
147
+ """
148
+ Calculate the distances between residuals and cluster centers.
149
+
150
+ Args:
151
+ resid (array): Residual values.
152
+
153
+ Returns:
154
+ array: Array of distances.
155
+ """
156
  dist = []
157
  for i, model in enumerate(self.kmeans_models):
158
  dist.append(
 
166
  return np.array(dist)
167
 
168
  def pipeline(self, df_new, df_trans, scaler):
169
+ """
170
+ Perform the anomaly detection pipeline.
171
+
172
+ Args:
173
+ df_new (DataFrame): Input data for prediction.
174
+ df_trans (DataFrame): Transformed input data.
175
+ scaler (object): Scaler object for inverse transformation.
176
+
177
+ Returns:
178
+ tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances.
179
+ """
180
  actual_list, pred_list, resid_list = self.initialize_lists()
181
  pred = self.predict(df_new)
182
  actual, resid = self.calculate_residuals(df_trans, pred)
src/vav/VAVAnomalizer.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from tensorflow.keras.models import load_model
3
+ import joblib
4
+
5
+
6
+ class VAVAnomalizer:
7
+ def __init__(
8
+ self,
9
+ rtu_id,
10
+ prediction_model_path,
11
+ clustering_model_path,
12
+ num_inputs,
13
+ num_outputs,
14
+ ):
15
+ """
16
+ Initializes a VAVAnomalizer object.
17
+
18
+ Args:
19
+ rtu_id (int): The ID of the RTU (Roof Top Unit) associated with the VAV (Variable Air Volume) system.
20
+ prediction_model_path (str): The file path to the prediction model.
21
+ clustering_model_path (str): The file path to the clustering model.
22
+ num_inputs (int): The number of input features for the prediction model.
23
+ num_outputs (int): The number of output features for the prediction model.
24
+ """
25
+ self.rtu_id = rtu_id
26
+ self.num_inputs = num_inputs
27
+ self.num_outputs = num_outputs
28
+ self.load_models(prediction_model_path, clustering_model_path)
29
+
30
+ def load_models(self, prediction_model_path, clustering_model_path):
31
+ """
32
+ Loads the prediction model and clustering model.
33
+
34
+ Args:
35
+ prediction_model_path (str): The file path to the prediction model.
36
+ clustering_model_path (str): The file path to the clustering model.
37
+ """
38
+ self.model = load_model(prediction_model_path)
39
+ self.kmeans_model = joblib.load(clustering_model_path)
40
+
41
+ def initialize_lists(self, size=30):
42
+ """
43
+ Initialize lists for storing actual, predicted, and residual values.
44
+
45
+ Args:
46
+ size (int): Size of the lists.
47
+
48
+ Returns:
49
+ tuple: A tuple containing three lists initialized with zeros.
50
+ """
51
+ initial_values = [0] * size
52
+ return initial_values.copy(), initial_values.copy(), initial_values.copy()
53
+
54
+ def predict(self, df_new):
55
+ """
56
+ Makes predictions using the prediction model.
57
+
58
+ Args:
59
+ df_new (numpy.ndarray): The new data for prediction.
60
+
61
+ Returns:
62
+ numpy.ndarray: The predicted values.
63
+ """
64
+ return self.model.predict(df_new)
65
+
66
+ def calculate_residuals(self, df_trans, pred):
67
+ """
68
+ Calculates the residuals between the actual values and the predicted values.
69
+
70
+ Args:
71
+ df_trans (numpy.ndarray): The transformed data.
72
+ pred (numpy.ndarray): The predicted values.
73
+
74
+ Returns:
75
+ numpy.ndarray: The actual values.
76
+ numpy.ndarray: The residuals.
77
+ """
78
+ actual = df_trans[30, : self.num_outputs]
79
+ resid = actual - pred
80
+ return actual, resid
81
+
82
+ def calculate_distances(self, resid):
83
+ """
84
+ Calculate the distances between residuals and cluster centers.
85
+
86
+ Args:
87
+ resid (array): Residual values.
88
+
89
+ Returns:
90
+ array: Array of distances.
91
+ """
92
+ dist = []
93
+ dist.append(np.linalg.norm(resid - self.kmeans_model.cluster_centers_[0]))
94
+
95
+ return np.array(dist)
96
+
97
+ def resize_prediction(self, pred, df_trans):
98
+ """
99
+ Resize the predicted values to match the shape of the transformed input data.
100
+
101
+ Args:
102
+ pred (array): Predicted values.
103
+ df_trans (DataFrame): Transformed input data.
104
+
105
+ Returns:
106
+ array: Resized predicted values.
107
+ """
108
+ pred = np.resize(
109
+ pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :]))
110
+ )
111
+ pred[:, -len(df_trans[30, self.num_outputs :]) :] = df_trans[
112
+ 30, self.num_outputs :
113
+ ]
114
+ return pred
115
+
116
+ def inverse_transform(self, scaler, pred, df_trans):
117
+ """
118
+ Inverse transform the predicted and actual values.
119
+
120
+ Args:
121
+ scaler (object): Scaler object for inverse transformation.
122
+ pred (array): Predicted values.
123
+ df_trans (DataFrame): Transformed input data.
124
+
125
+ Returns:
126
+ tuple: A tuple containing the actual and predicted values after inverse transformation.
127
+ """
128
+ pred = scaler.inverse_transform(np.array(pred))
129
+ actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
130
+ return actual, pred
131
+
132
+ def update_lists(self, actual_list, pred_list, resid_list, actual, pred, resid):
133
+ """
134
+ Update the lists of actual, predicted, and residual values.
135
+
136
+ Args:
137
+ actual_list (list): List of actual values.
138
+ pred_list (list): List of predicted values.
139
+ resid_list (list): List of residual values.
140
+ actual (array): Actual values.
141
+ pred (array): Predicted values.
142
+ resid (array): Residual values.
143
+
144
+ Returns:
145
+ tuple: A tuple containing the updated lists of actual, predicted, and residual values.
146
+ """
147
+ actual_list.pop(0)
148
+ pred_list.pop(0)
149
+ resid_list.pop(0)
150
+ actual_list.append(actual[0, 1])
151
+ pred_list.append(pred[0, 1])
152
+ resid_list.append(resid[0, 1])
153
+ return actual_list, pred_list, resid_list
154
+
155
+ def pipeline(self, df_new, df_trans, scaler):
156
+ """
157
+ Perform the anomaly detection pipeline.
158
+
159
+ Args:
160
+ df_new (DataFrame): Input data for prediction.
161
+ df_trans (DataFrame): Transformed input data.
162
+ scaler (object): Scaler object for inverse transformation.
163
+
164
+ Returns:
165
+ tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances.
166
+ """
167
+ actual_list, pred_list, resid_list = self.initialize_lists()
168
+ pred = self.predict(df_new)
169
+ actual, resid = self.calculate_residuals(df_trans, pred)
170
+ pred = self.resize_prediction(pred, df_trans)
171
+ actual, pred = self.inverse_transform(scaler, pred, df_trans)
172
+ actual_list, pred_list, resid_list = self.update_lists(
173
+ actual_list, pred_list, resid_list, actual, pred, resid
174
+ )
175
+ dist = self.calculate_distances(resid)
176
+ return actual_list, pred_list, resid_list, dist
src/vav/VAVPipeline.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from sklearn.preprocessing import StandardScaler
3
+ from pickle import load
4
+ import numpy as np
5
+
6
+
7
+ class VAVPipeline:
8
+
9
+ def __init__(self, rtu_id, scaler_path=None, window_size=30):
10
+
11
+ self.window_size = window_size
12
+
13
+ if rtu_id == 1:
14
+ self.zones = [69, 68, 67, 66, 65, 64, 42, 41, 40, 39, 38, 37, 36]
15
+ if rtu_id == 2:
16
+ self.zones = [
17
+ 72,
18
+ 71,
19
+ 63,
20
+ 62,
21
+ 60,
22
+ 59,
23
+ 58,
24
+ 57,
25
+ 50,
26
+ 49,
27
+ 44,
28
+ 43,
29
+ 35,
30
+ 34,
31
+ 33,
32
+ 32,
33
+ 31,
34
+ 30,
35
+ 29,
36
+ 28,
37
+ ]
38
+
39
+ outputs = ["temp", "fan_speed"]
40
+ inputs = ["cooling_sp", "heating_sp"]
41
+ self.output_col_names = []
42
+ self.input_col_names = [
43
+ f"rtu_00{rtu_id}_fltrd_sa_flow_tn",
44
+ f"rtu_00{rtu_id}_sa_temp",
45
+ "air_temp_set_1",
46
+ "air_temp_set_2",
47
+ "dew_point_temperature_set_1d",
48
+ "relative_humidity_set_1",
49
+ "solar_radiation_set_1",
50
+ ]
51
+ for zone in self.zones:
52
+ for output in outputs:
53
+ self.output_col_names.append(f"zone_0{zone}_{output}")
54
+ for input in inputs:
55
+ self.input_col_names.append(f"zone_0{zone}_{input}")
56
+
57
+ self.column_names = self.output_col_names + self.input_col_names
58
+
59
+ if scaler_path:
60
+ self.scaler = self.get_scaler(scaler_path)
61
+
62
+ def get_scaler(self, scaler_path):
63
+ return load(scaler_path)
64
+
65
+ def get_window(self, df):
66
+ len_df = len(df)
67
+ if len_df > self.window_size:
68
+ return df[len_df - (self.window_size + 1) : len_df].astype("float32")
69
+ else:
70
+ return None
71
+
72
+ def transform_window(self, df_window):
73
+ return self.scaler.transform(df_window)
74
+
75
+ def prepare_input(self, df_trans):
76
+ return df_trans[: self.window_size, :].reshape(
77
+ (1, self.window_size, len(self.column_names))
78
+ )
79
+
80
+ def extract_data_from_message(self, message):
81
+ payload = json.loads(message.payload.decode())
82
+
83
+ len_df = len(self.df)
84
+
85
+ k = {}
86
+ for col in self.column_names:
87
+ k[col] = payload[col]
88
+ self.df.loc[len_df] = k
89
+ return self.df
90
+
91
+ def fit(self, message):
92
+ df = self.extract_data_from_message(message)
93
+ df_window = self.get_window(df)
94
+ if df_window is not None:
95
+ df_trans = self.transform_window(df_window)
96
+ df_new = self.prepare_input(df_trans)
97
+ else:
98
+ df_new = None
99
+ df_trans = None
100
+ return df_new, df_trans
src/vav/models/kmeans_vav_1.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:086d45b9d2c98baaea5b0588cd6d228d84eb141b707fe845b11316b3ddc58774
3
+ size 1568153
src/vav/models/lstm_vav_01.keras ADDED
Binary file (658 kB). View file
 
src/vav/models/scaler_vav_1.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:293ee3c9082e7104dfc96425cecad2a44e5914bbd1f43c25a0fd8c36507b103a
3
+ size 1925