File size: 3,010 Bytes
3b66598
 
 
fff2149
 
3b66598
fff2149
 
 
767e14d
 
fff2149
767e14d
dbd7ac0
 
 
 
 
 
 
 
 
 
3b66598
 
 
4a389dc
dbd7ac0
 
 
767e14d
66977cd
767e14d
66977cd
767e14d
dbd7ac0
66977cd
4a389dc
3b66598
 
 
 
 
767e14d
 
4a389dc
3b66598
66977cd
 
 
 
767e14d
4a389dc
fff2149
 
cea29ef
3b66598
 
767e14d
 
 
 
 
fff2149
4a389dc
767e14d
4a389dc
767e14d
 
3b66598
767e14d
 
 
 
 
 
 
 
 
 
 
4a389dc
767e14d
4a389dc
767e14d
3b66598
767e14d
66977cd
 
4a389dc
66977cd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import json
import joblib
import pandas as pd
from sklearn.preprocessing import StandardScaler
from pickle import load
import numpy as np


class RTUPipeline:
    scaler1 = None  # RTU 1,2
    scaler2 = None  # RTU 3,4

    def __init__(self, rtus=[1, 2, 3, 4], scaler1_path=None, scaler2_path=None):

        outputs = [
            "sa_temp",
            "oadmpr_pct",
            "ra_temp",
            "oa_temp",
            "ma_temp",
            "sf_vfd_spd_fbk_tn",
            "rf_vfd_spd_fbk_tn",
        ]
        self.output_col_names = [
            "hp_hws_temp",
        ]

        for rtu in rtus:
            for output in outputs:
                self.output_col_names.append(f"rtu_00{rtu}_{output}")

        self.input_col_names = []

        for rtu in rtus:
            self.input_col_names.append(f"rtu_00{rtu}_sat_sp_tn")

        self.input_col_names = self.input_col_names + [
            "air_temp_set_1",
            "air_temp_set_2",
            "dew_point_temperature_set_1d",
            "relative_humidity_set_1",
            "solar_radiation_set_1",
        ]
        self.num_inputs = len(self.input_col_names) - 2
        self.num_outputs = len(self.output_col_names) - 14
        self.column_names = self.output_col_names + self.input_col_names

        if scaler1_path:
            self.scaler1 = self.get_scaler(scaler1_path)
        if scaler2_path:
            self.scaler2 = self.get_scaler(scaler2_path)

        self.df = pd.DataFrame(columns=self.column_names)

    def get_scaler(self, scaler_path):
        return joblib.load(scaler_path)

    def transform_window(self, df_window):
        columns_scaler1 = [0] + list(range(1, 15)) + [29, 30] + list(range(33, 38))
        columns_scaler2 = [0] + list(range(15, 29)) + [31, 32] + list(range(33, 38))
        return self.scaler1.transform(
            df_window.iloc[:, columns_scaler1].values
        ), self.scaler2.transform(df_window.iloc[:, columns_scaler2].values)

    def prepare_input(self, df_trans):
        return df_trans[:30, :].reshape((1, 30, len(self.column_names) - 16))

    def extract_data_from_message(self, df: pd.DataFrame):
        df = df[self.column_names]
        len_df = len(self.df)
        if len(self.df) != 0:
            self.df = pd.concat([self.df, df], axis=0)
        else:
            self.df = df

        if len_df > 31:
            self.df = self.df.iloc[len_df - 31 : len_df]
            self.df.loc[len_df] = self.df.mean()
            return self.df
        else:
            return None

    def fit(self, df: pd.DataFrame):

        df_window = self.extract_data_from_message(df)
        if df_window is not None:
            df_trans1, df_trans2 = self.transform_window(df_window)
            df_new1 = self.prepare_input(df_trans1)
            df_new2 = self.prepare_input(df_trans2)
        else:
            df_new1 = None
            df_trans1 = None
            df_new2 = None
            df_trans2 = None
        return df_new1, df_trans1, df_new2, df_trans2