File size: 40,056 Bytes
e3c6dcf
 
 
 
816790f
e3c6dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d4213
 
e3c6dcf
 
 
 
816790f
e3c6dcf
 
 
 
 
 
 
 
816790f
e3c6dcf
 
 
e8d4213
 
e3c6dcf
 
 
e8d4213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c6dcf
 
 
 
 
816790f
e3c6dcf
 
 
 
 
 
816790f
e3c6dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816790f
e3c6dcf
 
 
 
 
 
 
 
816790f
e3c6dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816790f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c6dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816790f
e3c6dcf
 
 
 
 
 
 
 
816790f
e3c6dcf
 
 
 
 
 
 
 
 
 
816790f
e3c6dcf
 
 
 
 
e8d4213
e3c6dcf
 
816790f
e3c6dcf
 
 
 
 
e8d4213
 
 
 
 
 
 
 
e3c6dcf
 
 
 
816790f
e3c6dcf
 
 
 
 
 
 
 
 
 
e8d4213
e3c6dcf
 
 
 
 
 
 
 
 
 
 
816790f
e3c6dcf
 
 
 
 
e8d4213
e3c6dcf
 
e8d4213
e3c6dcf
 
 
 
 
 
 
 
 
 
816790f
e3c6dcf
 
 
 
 
 
e8d4213
 
 
 
 
 
e3c6dcf
 
 
 
 
 
 
 
 
e8d4213
 
 
 
 
 
 
 
 
 
 
 
e3c6dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d4213
e3c6dcf
e8d4213
e3c6dcf
 
816790f
 
 
 
 
 
 
 
 
 
 
 
e3c6dcf
 
e8d4213
e3c6dcf
e8d4213
e3c6dcf
 
 
 
 
 
e8d4213
e3c6dcf
 
 
 
 
 
e8d4213
e3c6dcf
 
 
 
 
 
 
 
 
e8d4213
e3c6dcf
 
 
 
 
e8d4213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c6dcf
 
e8d4213
e3c6dcf
 
 
 
 
e8d4213
 
e3c6dcf
 
 
 
e8d4213
e3c6dcf
 
 
 
 
e8d4213
e3c6dcf
 
e8d4213
e3c6dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d4213
e3c6dcf
e8d4213
 
 
 
 
 
 
 
 
 
 
 
e3c6dcf
 
 
 
 
 
 
 
 
 
e8d4213
e3c6dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d4213
 
 
e3c6dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd \n",
    "from datetime import datetime \n",
    "from datetime import date\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from keras.models import Sequential\n",
    "from keras.layers import LSTM, Dense\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
    "from keras.callbacks import ModelCheckpoint\n",
    "import tensorflow as tf\n",
    "import joblib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "merged = pd.read_csv(r'../data/long_merge.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "zones = [69, 68, 67, 66, 65, 64, 42, 41, 40, 39, 38, 37, 36]\n",
    "rtu = 1\n",
    "cols = []\n",
    "\n",
    "for zone in zones:\n",
    "    for column in merged.columns:\n",
    "        if (\n",
    "            f\"zone_0{zone}\" in column\n",
    "            and \"co2\" not in column\n",
    "            and \"hw_valve\" not in column\n",
    "            and \"cooling_sp\" not in column\n",
    "            and \"heating_sp\" not in column\n",
    "        ):\n",
    "            cols.append(column)\n",
    "\n",
    "cols = (\n",
    "    [\"date\"]\n",
    "    + cols\n",
    "    + [\n",
    "        f\"rtu_00{rtu}_fltrd_sa_flow_tn\",\n",
    "        f\"rtu_00{rtu}_sa_temp\", \n",
    "        \"air_temp_set_1\",\n",
    "        \"air_temp_set_2\",\n",
    "        \"dew_point_temperature_set_1d\",\n",
    "        \"relative_humidity_set_1\",\n",
    "        \"solar_radiation_set_1\",\n",
    "    ]\n",
    ")\n",
    "\n",
    "for zone in zones:\n",
    "    for column in merged.columns:\n",
    "        if f\"zone_0{zone}\" in column:\n",
    "            if \"cooling_sp\" in column or \"heating_sp\" in column:\n",
    "                cols.append(column)\n",
    "                \n",
    "input_dataset = merged[cols]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\arbal\\AppData\\Local\\Temp\\ipykernel_368\\4293840618.py:1: SettingWithCopyWarning: \n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
      "  input_dataset['date'] = pd.to_datetime(input_dataset['date'], format = \"%Y-%m-%d %H:%M:%S\")\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "There are NA values in the DataFrame columns.\n"
     ]
    }
   ],
   "source": [
    "input_dataset['date'] = pd.to_datetime(input_dataset['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
    "df_filtered = input_dataset[ (input_dataset.date.dt.date >date(2019, 1, 1)) & (input_dataset.date.dt.date< date(2021, 1, 1))]\n",
    "\n",
    "if df_filtered.isna().any().any():\n",
    "    print(\"There are NA values in the DataFrame columns.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[]"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "testdataset_df = df_filtered[(df_filtered.date.dt.date >date(2020, 3, 1)) & (df_filtered.date.dt.date <date(2020,7, 1))]\n",
    "\n",
    "# traindataset_df = df_filtered[ (df_filtered.date.dt.date >date(2019, 11, 8))]\n",
    "\n",
    "traindataset_df = df_filtered[(df_filtered.date.dt.date >date(2019, 3, 1)) & (df_filtered.date.dt.date <date(2020, 3, 1)) | (df_filtered.date.dt.date >date(2020, 7, 1)) & (df_filtered.date.dt.date <date(2020, 12, 1))]\n",
    "testdataset = testdataset_df.drop(columns=[\"date\"]).values\n",
    "traindataset = traindataset_df.drop(columns=[\"date\"]).values\n",
    "\n",
    "columns_with_na = traindataset_df.columns[traindataset_df.isna().any()].tolist()\n",
    "columns_with_na"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['date', 'zone_069_temp', 'zone_069_fan_spd', 'zone_068_temp',\n",
       "       'zone_068_fan_spd', 'zone_067_temp', 'zone_067_fan_spd',\n",
       "       'zone_066_temp', 'zone_066_fan_spd', 'zone_065_temp',\n",
       "       'zone_065_fan_spd', 'zone_064_temp', 'zone_064_fan_spd',\n",
       "       'zone_042_temp', 'zone_042_fan_spd', 'zone_041_temp',\n",
       "       'zone_041_fan_spd', 'zone_040_temp', 'zone_040_fan_spd',\n",
       "       'zone_039_temp', 'zone_039_fan_spd', 'zone_038_temp',\n",
       "       'zone_038_fan_spd', 'zone_037_temp', 'zone_037_fan_spd',\n",
       "       'zone_036_temp', 'zone_036_fan_spd', 'rtu_001_fltrd_sa_flow_tn',\n",
       "       'rtu_001_sa_temp', 'air_temp_set_1', 'air_temp_set_2',\n",
       "       'dew_point_temperature_set_1d', 'relative_humidity_set_1',\n",
       "       'solar_radiation_set_1', 'zone_069_cooling_sp', 'zone_069_heating_sp',\n",
       "       'zone_067_cooling_sp', 'zone_067_heating_sp', 'zone_066_cooling_sp',\n",
       "       'zone_066_heating_sp', 'zone_065_cooling_sp', 'zone_065_heating_sp',\n",
       "       'zone_064_cooling_sp', 'zone_064_heating_sp', 'zone_042_cooling_sp',\n",
       "       'zone_042_heating_sp', 'zone_041_cooling_sp', 'zone_041_heating_sp',\n",
       "       'zone_039_cooling_sp', 'zone_039_heating_sp', 'zone_038_cooling_sp',\n",
       "       'zone_038_heating_sp', 'zone_037_cooling_sp', 'zone_037_heating_sp',\n",
       "       'zone_036_cooling_sp', 'zone_036_heating_sp'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "traindataset_df.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0 0\n"
     ]
    }
   ],
   "source": [
    "print(traindataset_df.isna().sum().sum(), testdataset_df.isna().sum().sum())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1073512, 391818)"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(traindataset), len(testdataset)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['scaler_vav_1.pkl']"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "traindataset = traindataset.astype('float32')\n",
    "testdataset = testdataset.astype('float32')\n",
    "\n",
    "scaler = StandardScaler()\n",
    "traindataset = scaler.fit_transform(traindataset)\n",
    "testdataset = scaler.transform(testdataset)\n",
    "\n",
    "joblib.dump(scaler, 'scaler_vav_1.pkl')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "train,test = traindataset,testdataset\n",
    "\n",
    "def create_dataset(dataset,time_step):\n",
    "    x = []\n",
    "    Y = []\n",
    "    for i in range(len(dataset) - time_step - 1):\n",
    "        x.append(dataset[i:(i+time_step),:])\n",
    "        Y.append(dataset[i+time_step,0:26])\n",
    "    x= np.array(x)\n",
    "    Y = np.array(Y)\n",
    "    return x,Y\n",
    "time_step = 30\n",
    "X_train, y_train = create_dataset(train, time_step)\n",
    "X_test, y_test = create_dataset(test, time_step)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((1073481, 30, 55), (1073481, 26))"
      ]
     },
     "execution_count": 52,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train.shape, y_train.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/3\n",
      "\u001b[1m8387/8387\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0696\n",
      "Epoch 1: val_loss improved from inf to 0.65445, saving model to lstm_vav_01.keras\n",
      "\u001b[1m8387/8387\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m589s\u001b[0m 69ms/step - loss: 0.0696 - val_loss: 0.6544\n",
      "Epoch 2/3\n",
      "\u001b[1m 449/8387\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m7:16\u001b[0m 55ms/step - loss: 0.0033"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[54], line 11\u001b[0m\n\u001b[0;32m      9\u001b[0m checkpoint_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlstm_vav_01.keras\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m     10\u001b[0m checkpoint_callback \u001b[38;5;241m=\u001b[39m ModelCheckpoint(filepath\u001b[38;5;241m=\u001b[39mcheckpoint_path, monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, save_best_only\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmin\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m---> 11\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mX_test\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_test\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m128\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mcheckpoint_callback\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m    116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 117\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m    119\u001b[0m     filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:314\u001b[0m, in \u001b[0;36mTensorFlowTrainer.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001b[0m\n\u001b[0;32m    312\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, iterator \u001b[38;5;129;01min\u001b[39;00m epoch_iterator\u001b[38;5;241m.\u001b[39menumerate_epoch():\n\u001b[0;32m    313\u001b[0m     callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m--> 314\u001b[0m     logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    315\u001b[0m     logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pythonify_logs(logs)\n\u001b[0;32m    316\u001b[0m     callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_end(step, logs)\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m    149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m   \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m    152\u001b[0m   filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m    830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m   result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m    836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:878\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m    875\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m    876\u001b[0m \u001b[38;5;66;03m# In this case we have not created variables on the first call. So we can\u001b[39;00m\n\u001b[0;32m    877\u001b[0m \u001b[38;5;66;03m# run the first trace but we should fail if variables are created.\u001b[39;00m\n\u001b[1;32m--> 878\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    879\u001b[0m \u001b[43m    \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m    880\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    881\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_created_variables:\n\u001b[0;32m    882\u001b[0m   \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreating variables on a non-first call to a function\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    883\u001b[0m                    \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m decorated with tf.function.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:139\u001b[0m, in \u001b[0;36mcall_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m    137\u001b[0m bound_args \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m    138\u001b[0m flat_inputs \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39munpack_inputs(bound_args)\n\u001b[1;32m--> 139\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m    140\u001b[0m \u001b[43m    \u001b[49m\u001b[43mflat_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\n\u001b[0;32m    141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\concrete_function.py:1322\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, tensor_inputs, captured_inputs)\u001b[0m\n\u001b[0;32m   1318\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m   1319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m   1320\u001b[0m     \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m   1321\u001b[0m   \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1322\u001b[0m   \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_preflattened\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1323\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m   1324\u001b[0m     args,\n\u001b[0;32m   1325\u001b[0m     possible_gradient_type,\n\u001b[0;32m   1326\u001b[0m     executing_eagerly)\n\u001b[0;32m   1327\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:216\u001b[0m, in \u001b[0;36mAtomicFunction.call_preflattened\u001b[1;34m(self, args)\u001b[0m\n\u001b[0;32m    214\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall_preflattened\u001b[39m(\u001b[38;5;28mself\u001b[39m, args: Sequence[core\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[0;32m    215\u001b[0m \u001b[38;5;250m  \u001b[39m\u001b[38;5;124;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 216\u001b[0m   flat_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    217\u001b[0m   \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mpack_output(flat_outputs)\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:251\u001b[0m, in \u001b[0;36mAtomicFunction.call_flat\u001b[1;34m(self, *args)\u001b[0m\n\u001b[0;32m    249\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m record\u001b[38;5;241m.\u001b[39mstop_recording():\n\u001b[0;32m    250\u001b[0m   \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mexecuting_eagerly():\n\u001b[1;32m--> 251\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_bound_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    252\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    253\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    254\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunction_type\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflat_outputs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    255\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    256\u001b[0m   \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m    257\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m make_call_op_in_graph(\n\u001b[0;32m    258\u001b[0m         \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m    259\u001b[0m         \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[0;32m    260\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mfunction_call_options\u001b[38;5;241m.\u001b[39mas_attrs(),\n\u001b[0;32m    261\u001b[0m     )\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\context.py:1500\u001b[0m, in \u001b[0;36mContext.call_function\u001b[1;34m(self, name, tensor_inputs, num_outputs)\u001b[0m\n\u001b[0;32m   1498\u001b[0m cancellation_context \u001b[38;5;241m=\u001b[39m cancellation\u001b[38;5;241m.\u001b[39mcontext()\n\u001b[0;32m   1499\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1500\u001b[0m   outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1501\u001b[0m \u001b[43m      \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1502\u001b[0m \u001b[43m      \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1503\u001b[0m \u001b[43m      \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtensor_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1504\u001b[0m \u001b[43m      \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1505\u001b[0m \u001b[43m      \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1506\u001b[0m \u001b[43m  \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1507\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m   1508\u001b[0m   outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m   1509\u001b[0m       name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m   1510\u001b[0m       num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   1514\u001b[0m       cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_context,\n\u001b[0;32m   1515\u001b[0m   )\n",
      "File \u001b[1;32md:\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py:53\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m     51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m     52\u001b[0m   ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 53\u001b[0m   tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     54\u001b[0m \u001b[43m                                      \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m     55\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m     56\u001b[0m   \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "\n",
    "model = Sequential()\n",
    "model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
    "model.add(LSTM(units=50, return_sequences=True))\n",
    "model.add(LSTM(units=30))\n",
    "model.add(Dense(units=y_train.shape[1]))\n",
    "\n",
    "model.compile(optimizer='adam', loss='mean_squared_error')\n",
    "\n",
    "checkpoint_path = \"lstm_vav_01.keras\"\n",
    "checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
    "model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3, batch_size=128, verbose=1, callbacks=[checkpoint_callback])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "import keras\n",
    "checkpoint_path = \"lstm_vav_01.keras\"\n",
    "\n",
    "model = keras.models.load_model(checkpoint_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.load_weights(checkpoint_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1m12244/12244\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m110s\u001b[0m 9ms/step\n"
     ]
    }
   ],
   "source": [
    "test_predict1 = model.predict(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{0: 'zone_069_temp',\n",
       " 1: 'zone_069_fan_spd',\n",
       " 2: 'zone_068_temp',\n",
       " 3: 'zone_068_fan_spd',\n",
       " 4: 'zone_067_temp',\n",
       " 5: 'zone_067_fan_spd',\n",
       " 6: 'zone_066_temp',\n",
       " 7: 'zone_066_fan_spd',\n",
       " 8: 'zone_065_temp',\n",
       " 9: 'zone_065_fan_spd',\n",
       " 10: 'zone_064_temp',\n",
       " 11: 'zone_064_fan_spd',\n",
       " 12: 'zone_042_temp',\n",
       " 13: 'zone_042_fan_spd',\n",
       " 14: 'zone_041_temp',\n",
       " 15: 'zone_041_fan_spd',\n",
       " 16: 'zone_040_temp',\n",
       " 17: 'zone_040_fan_spd',\n",
       " 18: 'zone_039_temp',\n",
       " 19: 'zone_039_fan_spd',\n",
       " 20: 'zone_038_temp',\n",
       " 21: 'zone_038_fan_spd',\n",
       " 22: 'zone_037_temp',\n",
       " 23: 'zone_037_fan_spd',\n",
       " 24: 'zone_036_temp',\n",
       " 25: 'zone_036_fan_spd',\n",
       " 26: 'rtu_001_fltrd_sa_flow_tn',\n",
       " 27: 'rtu_001_sa_temp',\n",
       " 28: 'air_temp_set_1',\n",
       " 29: 'air_temp_set_2',\n",
       " 30: 'dew_point_temperature_set_1d',\n",
       " 31: 'relative_humidity_set_1',\n",
       " 32: 'solar_radiation_set_1',\n",
       " 33: 'zone_069_cooling_sp',\n",
       " 34: 'zone_069_heating_sp',\n",
       " 35: 'zone_067_cooling_sp',\n",
       " 36: 'zone_067_heating_sp',\n",
       " 37: 'zone_066_cooling_sp',\n",
       " 38: 'zone_066_heating_sp',\n",
       " 39: 'zone_065_cooling_sp',\n",
       " 40: 'zone_065_heating_sp',\n",
       " 41: 'zone_064_cooling_sp',\n",
       " 42: 'zone_064_heating_sp',\n",
       " 43: 'zone_042_cooling_sp',\n",
       " 44: 'zone_042_heating_sp',\n",
       " 45: 'zone_041_cooling_sp',\n",
       " 46: 'zone_041_heating_sp',\n",
       " 47: 'zone_039_cooling_sp',\n",
       " 48: 'zone_039_heating_sp',\n",
       " 49: 'zone_038_cooling_sp',\n",
       " 50: 'zone_038_heating_sp',\n",
       " 51: 'zone_037_cooling_sp',\n",
       " 52: 'zone_037_heating_sp',\n",
       " 53: 'zone_036_cooling_sp',\n",
       " 54: 'zone_036_heating_sp'}"
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "idx_to_col = {i:col for i,col in enumerate(traindataset_df.drop(columns = ['date']).columns)}\n",
    "idx_to_col"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib qt\n",
    "plt.figure()\n",
    "var = 10\n",
    "plt.plot(y_test[:,var], label='Original Testing Data', color='blue')\n",
    "plt.plot(test_predict1[:,var], label='Predicted Testing Data', color='red',alpha=0.8)\n",
    "anomalies = np.where(abs(test_predict1[:,var] - y_test[:,var]) > 0.5)\n",
    "plt.scatter(anomalies,test_predict1[anomalies,var], color='black',marker =\"o\",s=100 )\n",
    "\n",
    "\n",
    "plt.title('Testing Data - Predicted vs Actual')\n",
    "plt.xlabel('Time')\n",
    "plt.ylabel('Value')\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.mixture import GaussianMixture\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.decomposition import PCA\n",
    "\n",
    "\n",
    "# Generating random data for demonstration\n",
    "np.random.seed(0)\n",
    "X =  test_predict1 - y_test\n",
    "\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "# Creating the GMM instance with desired number of clusters\n",
    "gmm = GaussianMixture(n_components=2)\n",
    "\n",
    "# Fitting the model to the data\n",
    "gmm.fit(X)\n",
    "\n",
    "# Getting the cluster labels\n",
    "labels = gmm.predict(X)\n",
    "\n",
    "# Plotting the data points with colors representing different clusters\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.title('GMM Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['kmeans_vav_1.pkl']"
      ]
     },
     "execution_count": 86,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from sklearn.cluster import KMeans\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.decomposition import PCA\n",
    "\n",
    "# Generating random data for demonstration\n",
    "np.random.seed(0)\n",
    "X = (test_predict1 - y_test)\n",
    "\n",
    "k = 2\n",
    "\n",
    "kmeans = KMeans(n_clusters=k)\n",
    "\n",
    "kmeans.fit(X)\n",
    "\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "\n",
    "# Getting the cluster centers and labels\n",
    "centroids = kmeans.cluster_centers_\n",
    "centroids = pca.transform(centroids)\n",
    "labels = kmeans.labels_\n",
    "\n",
    "# Plotting the data points and cluster centers\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', c='red', s=200, linewidths=2)\n",
    "plt.title('KMeans Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n",
    "\n",
    "joblib.dump(kmeans, 'kmeans_vav_1.pkl')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "k = 60\n",
    "X= test_predict1 - y_test\n",
    "processed_data = []\n",
    "feat_df = pd.DataFrame(columns=[\"mean\",\"std\",])\n",
    "for i in range(0,len(X), 60):\n",
    "    mean = X[i:i+k].mean(axis = 0)\n",
    "    std = X[i:i+k].std(axis = 0)\n",
    "    max = X[i:i+k].max(axis = 0)\n",
    "    min = X[i:i+k].min(axis = 0)\n",
    "    iqr = np.percentile(X[i:i+k], 75, axis=0) - np.percentile(X[i:i+k], 25,axis=0)\n",
    "    data = np.concatenate([mean, std, max, min, iqr])\n",
    "    processed_data.append([data])\n",
    "processed_data = np.concatenate(processed_data,axis=0) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "X = processed_data\n",
    "\n",
    "kmeans = KMeans(n_clusters=3, algorithm='elkan', max_iter=1000, n_init = 5)\n",
    "\n",
    "kmeans.fit(X)\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "# Getting the cluster centers and labels\n",
    "centroids = kmeans.cluster_centers_\n",
    "centroids = pca.transform(centroids)\n",
    "labels = kmeans.labels_\n",
    "\n",
    "# Plotting the data points and cluster centers\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', c='red', s=200, linewidths=2)\n",
    "plt.title('KMeans Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.mixture import GaussianMixture\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.decomposition import PCA\n",
    "\n",
    "# Generating random data for demonstration\n",
    "np.random.seed(0)\n",
    "X = processed_data\n",
    "\n",
    "# Creating the GMM instance with desired number of clusters\n",
    "gmm = GaussianMixture(n_components=2, init_params='k-means++')\n",
    "\n",
    "# Fitting the model to the data\n",
    "gmm.fit(X)\n",
    "labels = gmm.predict(X)\n",
    "\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "# Getting the cluster labels\n",
    "\n",
    "# Plotting the data points with colors representing different clusters\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.title('GMM Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.cluster import KMeans\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "# Generating random data for demonstration\n",
    "np.random.seed(0)\n",
    "X = test_predict1 - y_test \n",
    "\n",
    "kmeans = KMeans(n_clusters=2)\n",
    "\n",
    "kmeans.fit(X)\n",
    "\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "\n",
    "# Getting the cluster centers and labels\n",
    "centroids = kmeans.cluster_centers_\n",
    "centroids = pca.transform(centroids)\n",
    "labels = kmeans.labels_\n",
    "\n",
    "# Plotting the data points and cluster centers\n",
    "plt.figure()\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', c='red', s=200, linewidths=2)\n",
    "plt.text(centroids[0,0], centroids[0,1], 'Normal', fontsize=12, color='red')\n",
    "plt.text(centroids[1,0], centroids[1,1], 'Anomaly', fontsize=12, color='red')\n",
    "plt.title('KMeans Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "329810"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sum(labels==0)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "tensorflow",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}