Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """ | |
import logging | |
import os | |
logger = logging.getLogger(__name__) | |
class InputExample(object): | |
"""A single training/test example for token classification.""" | |
def __init__(self, guid, words, labels): | |
"""Constructs a InputExample. | |
Args: | |
guid: Unique id for the example. | |
words: list. The words of the sequence. | |
labels: (Optional) list. The labels for each word of the sequence. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
self.guid = guid | |
self.words = words | |
self.labels = labels | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, input_ids, input_mask, segment_ids, label_ids): | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.segment_ids = segment_ids | |
self.label_ids = label_ids | |
def read_examples_from_file(data_dir, mode): | |
file_path = os.path.join(data_dir, "{}.txt".format(mode)) | |
guid_index = 1 | |
examples = [] | |
with open(file_path, encoding="utf-8") as f: | |
words = [] | |
labels = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if words: | |
examples.append(InputExample(guid="{}-{}".format(mode, guid_index), words=words, labels=labels)) | |
guid_index += 1 | |
words = [] | |
labels = [] | |
else: | |
splits = line.split(" ") | |
words.append(splits[0]) | |
if len(splits) > 1: | |
labels.append(splits[-1].replace("\n", "")) | |
else: | |
# Examples could have no label for mode = "test" | |
labels.append("O") | |
if words: | |
examples.append(InputExample(guid="{}-{}".format(mode, guid_index), words=words, labels=labels)) | |
return examples | |
def convert_examples_to_features( | |
examples, | |
label_list, | |
max_seq_length, | |
tokenizer, | |
cls_token_at_end=False, | |
cls_token="[CLS]", | |
cls_token_segment_id=1, | |
sep_token="[SEP]", | |
sep_token_extra=False, | |
pad_on_left=False, | |
pad_token=0, | |
pad_token_segment_id=0, | |
pad_token_label_id=-100, | |
sequence_a_segment_id=0, | |
mask_padding_with_zero=True, | |
): | |
""" Loads a data file into a list of `InputBatch`s | |
`cls_token_at_end` define the location of the CLS token: | |
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] | |
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] | |
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) | |
""" | |
label_map = {label: i for i, label in enumerate(label_list)} | |
features = [] | |
for (ex_index, example) in enumerate(examples): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d of %d", ex_index, len(examples)) | |
tokens = [] | |
label_ids = [] | |
for word, label in zip(example.words, example.labels): | |
word_tokens = tokenizer.tokenize(word) | |
tokens.extend(word_tokens) | |
# Use the real label id for the first token of the word, and padding ids for the remaining tokens | |
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) | |
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. | |
special_tokens_count = 3 if sep_token_extra else 2 | |
if len(tokens) > max_seq_length - special_tokens_count: | |
tokens = tokens[: (max_seq_length - special_tokens_count)] | |
label_ids = label_ids[: (max_seq_length - special_tokens_count)] | |
# The convention in BERT is: | |
# (a) For sequence pairs: | |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
# (b) For single sequences: | |
# tokens: [CLS] the dog is hairy . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 | |
# | |
# Where "type_ids" are used to indicate whether this is the first | |
# sequence or the second sequence. The embedding vectors for `type=0` and | |
# `type=1` were learned during pre-training and are added to the wordpiece | |
# embedding vector (and position vector). This is not *strictly* necessary | |
# since the [SEP] token unambiguously separates the sequences, but it makes | |
# it easier for the model to learn the concept of sequences. | |
# | |
# For classification tasks, the first vector (corresponding to [CLS]) is | |
# used as as the "sentence vector". Note that this only makes sense because | |
# the entire model is fine-tuned. | |
tokens += [sep_token] | |
label_ids += [pad_token_label_id] | |
if sep_token_extra: | |
# roberta uses an extra separator b/w pairs of sentences | |
tokens += [sep_token] | |
label_ids += [pad_token_label_id] | |
segment_ids = [sequence_a_segment_id] * len(tokens) | |
if cls_token_at_end: | |
tokens += [cls_token] | |
label_ids += [pad_token_label_id] | |
segment_ids += [cls_token_segment_id] | |
else: | |
tokens = [cls_token] + tokens | |
label_ids = [pad_token_label_id] + label_ids | |
segment_ids = [cls_token_segment_id] + segment_ids | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
padding_length = max_seq_length - len(input_ids) | |
if pad_on_left: | |
input_ids = ([pad_token] * padding_length) + input_ids | |
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask | |
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids | |
label_ids = ([pad_token_label_id] * padding_length) + label_ids | |
else: | |
input_ids += [pad_token] * padding_length | |
input_mask += [0 if mask_padding_with_zero else 1] * padding_length | |
segment_ids += [pad_token_segment_id] * padding_length | |
label_ids += [pad_token_label_id] * padding_length | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
assert len(label_ids) == max_seq_length | |
if ex_index < 5: | |
logger.info("*** Example ***") | |
logger.info("guid: %s", example.guid) | |
logger.info("tokens: %s", " ".join([str(x) for x in tokens])) | |
logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) | |
logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) | |
logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) | |
logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) | |
features.append( | |
InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids) | |
) | |
return features | |
def get_labels(path): | |
if path: | |
with open(path, "r") as f: | |
labels = f.read().splitlines() | |
if "O" not in labels: | |
labels = ["O"] + labels | |
return labels | |
else: | |
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] | |