Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). | |
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned | |
using a masked language modeling (MLM) loss. | |
""" | |
import argparse | |
import glob | |
import logging | |
import os | |
import pickle | |
import random | |
import re | |
import shutil | |
from typing import Dict, List, Tuple | |
import numpy as np | |
import torch | |
from torch.nn.utils.rnn import pad_sequence | |
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler | |
from torch.utils.data.distributed import DistributedSampler | |
from tqdm import tqdm, trange | |
from transformers import ( | |
WEIGHTS_NAME, | |
AdamW, | |
BertConfig, | |
BertForMaskedLM, | |
BertTokenizer, | |
CamembertConfig, | |
CamembertForMaskedLM, | |
CamembertTokenizer, | |
DistilBertConfig, | |
DistilBertForMaskedLM, | |
DistilBertTokenizer, | |
GPT2Config, | |
GPT2LMHeadModel, | |
GPT2Tokenizer, | |
OpenAIGPTConfig, | |
OpenAIGPTLMHeadModel, | |
OpenAIGPTTokenizer, | |
PreTrainedModel, | |
PreTrainedTokenizer, | |
RobertaConfig, | |
RobertaForMaskedLM, | |
RobertaTokenizer, | |
get_linear_schedule_with_warmup, | |
) | |
try: | |
from torch.utils.tensorboard import SummaryWriter | |
except ImportError: | |
from tensorboardX import SummaryWriter | |
logger = logging.getLogger(__name__) | |
MODEL_CLASSES = { | |
"gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), | |
"openai-gpt": (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), | |
"bert": (BertConfig, BertForMaskedLM, BertTokenizer), | |
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), | |
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), | |
"camembert": (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer), | |
} | |
class TextDataset(Dataset): | |
def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512): | |
assert os.path.isfile(file_path) | |
directory, filename = os.path.split(file_path) | |
cached_features_file = os.path.join( | |
directory, args.model_type + "_cached_lm_" + str(block_size) + "_" + filename | |
) | |
if os.path.exists(cached_features_file) and not args.overwrite_cache: | |
logger.info("Loading features from cached file %s", cached_features_file) | |
with open(cached_features_file, "rb") as handle: | |
self.examples = pickle.load(handle) | |
else: | |
logger.info("Creating features from dataset file at %s", directory) | |
self.examples = [] | |
with open(file_path, encoding="utf-8") as f: | |
text = f.read() | |
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text)) | |
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size | |
self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size])) | |
# Note that we are loosing the last truncated example here for the sake of simplicity (no padding) | |
# If your dataset is small, first you should loook for a bigger one :-) and second you | |
# can change this behavior by adding (model specific) padding. | |
logger.info("Saving features into cached file %s", cached_features_file) | |
with open(cached_features_file, "wb") as handle: | |
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) | |
def __len__(self): | |
return len(self.examples) | |
def __getitem__(self, item): | |
return torch.tensor(self.examples[item]) | |
class LineByLineTextDataset(Dataset): | |
def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512): | |
assert os.path.isfile(file_path) | |
# Here, we do not cache the features, operating under the assumption | |
# that we will soon use fast multithreaded tokenizers from the | |
# `tokenizers` repo everywhere =) | |
logger.info("Creating features from dataset file at %s", file_path) | |
with open(file_path, encoding="utf-8") as f: | |
lines = [line for line in f.read().splitlines() if len(line) > 0] | |
self.examples = tokenizer.batch_encode_plus(lines, max_length=block_size)["input_ids"] | |
def __len__(self): | |
return len(self.examples) | |
def __getitem__(self, i): | |
return torch.tensor(self.examples[i]) | |
def load_and_cache_examples(args, tokenizer, evaluate=False): | |
file_path = args.eval_data_file if evaluate else args.train_data_file | |
if args.line_by_line: | |
return LineByLineTextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size) | |
else: | |
return TextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size) | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]: | |
ordering_and_checkpoint_path = [] | |
glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix))) | |
for path in glob_checkpoints: | |
if use_mtime: | |
ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) | |
else: | |
regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path) | |
if regex_match and regex_match.groups(): | |
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) | |
checkpoints_sorted = sorted(ordering_and_checkpoint_path) | |
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] | |
return checkpoints_sorted | |
def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None: | |
if not args.save_total_limit: | |
return | |
if args.save_total_limit <= 0: | |
return | |
# Check if we should delete older checkpoint(s) | |
checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime) | |
if len(checkpoints_sorted) <= args.save_total_limit: | |
return | |
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit) | |
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] | |
for checkpoint in checkpoints_to_be_deleted: | |
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint)) | |
shutil.rmtree(checkpoint) | |
def mask_tokens(inputs: torch.Tensor, tokenizer: PreTrainedTokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ | |
labels = inputs.clone() | |
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) | |
probability_matrix = torch.full(labels.shape, args.mlm_probability) | |
special_tokens_mask = [ | |
tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() | |
] | |
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0) | |
if tokenizer._pad_token is not None: | |
padding_mask = labels.eq(tokenizer.pad_token_id) | |
probability_matrix.masked_fill_(padding_mask, value=0.0) | |
masked_indices = torch.bernoulli(probability_matrix).bool() | |
labels[~masked_indices] = -100 # We only compute loss on masked tokens | |
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) | |
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices | |
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token) | |
# 10% of the time, we replace masked input tokens with random word | |
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced | |
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long) | |
inputs[indices_random] = random_words[indices_random] | |
# The rest of the time (10% of the time) we keep the masked input tokens unchanged | |
return inputs, labels | |
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]: | |
""" Train the model """ | |
if args.local_rank in [-1, 0]: | |
tb_writer = SummaryWriter() | |
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
def collate(examples: List[torch.Tensor]): | |
if tokenizer._pad_token is None: | |
return pad_sequence(examples, batch_first=True) | |
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id) | |
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
train_dataloader = DataLoader( | |
train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate | |
) | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
no_decay = ["bias", "LayerNorm.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
"weight_decay": args.weight_decay, | |
}, | |
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
) | |
# Check if saved optimizer or scheduler states exist | |
if ( | |
args.model_name_or_path | |
and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) | |
and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt")) | |
): | |
# Load in optimizer and scheduler states | |
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) | |
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
# multi-gpu training (should be after apex fp16 initialization) | |
if args.n_gpu > 1: | |
model = torch.nn.DataParallel(model) | |
# Distributed training (should be after apex fp16 initialization) | |
if args.local_rank != -1: | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True | |
) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", len(train_dataset)) | |
logger.info(" Num Epochs = %d", args.num_train_epochs) | |
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
logger.info( | |
" Total train batch size (w. parallel, distributed & accumulation) = %d", | |
args.train_batch_size | |
* args.gradient_accumulation_steps | |
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
) | |
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
global_step = 0 | |
epochs_trained = 0 | |
steps_trained_in_current_epoch = 0 | |
# Check if continuing training from a checkpoint | |
if args.model_name_or_path and os.path.exists(args.model_name_or_path): | |
try: | |
# set global_step to gobal_step of last saved checkpoint from model path | |
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] | |
global_step = int(checkpoint_suffix) | |
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) | |
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) | |
logger.info(" Continuing training from checkpoint, will skip to saved global_step") | |
logger.info(" Continuing training from epoch %d", epochs_trained) | |
logger.info(" Continuing training from global step %d", global_step) | |
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) | |
except ValueError: | |
logger.info(" Starting fine-tuning.") | |
tr_loss, logging_loss = 0.0, 0.0 | |
model_to_resize = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training | |
model_to_resize.resize_token_embeddings(len(tokenizer)) | |
model.zero_grad() | |
train_iterator = trange( | |
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] | |
) | |
set_seed(args) # Added here for reproducibility | |
for _ in train_iterator: | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
for step, batch in enumerate(epoch_iterator): | |
# Skip past any already trained steps if resuming training | |
if steps_trained_in_current_epoch > 0: | |
steps_trained_in_current_epoch -= 1 | |
continue | |
inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch) | |
inputs = inputs.to(args.device) | |
labels = labels.to(args.device) | |
model.train() | |
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels) | |
loss = outputs[0] # model outputs are always tuple in transformers (see doc) | |
if args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel training | |
if args.gradient_accumulation_steps > 1: | |
loss = loss / args.gradient_accumulation_steps | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
tr_loss += loss.item() | |
if (step + 1) % args.gradient_accumulation_steps == 0: | |
if args.fp16: | |
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
else: | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
optimizer.step() | |
scheduler.step() # Update learning rate schedule | |
model.zero_grad() | |
global_step += 1 | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
# Log metrics | |
if ( | |
args.local_rank == -1 and args.evaluate_during_training | |
): # Only evaluate when single GPU otherwise metrics may not average well | |
results = evaluate(args, model, tokenizer) | |
for key, value in results.items(): | |
tb_writer.add_scalar("eval_{}".format(key), value, global_step) | |
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) | |
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) | |
logging_loss = tr_loss | |
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
checkpoint_prefix = "checkpoint" | |
# Save model checkpoint | |
output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step)) | |
os.makedirs(output_dir, exist_ok=True) | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(output_dir) | |
tokenizer.save_pretrained(output_dir) | |
torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
logger.info("Saving model checkpoint to %s", output_dir) | |
_rotate_checkpoints(args, checkpoint_prefix) | |
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) | |
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) | |
logger.info("Saving optimizer and scheduler states to %s", output_dir) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
epoch_iterator.close() | |
break | |
if args.max_steps > 0 and global_step > args.max_steps: | |
train_iterator.close() | |
break | |
if args.local_rank in [-1, 0]: | |
tb_writer.close() | |
return global_step, tr_loss / global_step | |
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix="") -> Dict: | |
# Loop to handle MNLI double evaluation (matched, mis-matched) | |
eval_output_dir = args.output_dir | |
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True) | |
if args.local_rank in [-1, 0]: | |
os.makedirs(eval_output_dir, exist_ok=True) | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
# Note that DistributedSampler samples randomly | |
def collate(examples: List[torch.Tensor]): | |
if tokenizer._pad_token is None: | |
return pad_sequence(examples, batch_first=True) | |
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id) | |
eval_sampler = SequentialSampler(eval_dataset) | |
eval_dataloader = DataLoader( | |
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate | |
) | |
# multi-gpu evaluate | |
if args.n_gpu > 1: | |
model = torch.nn.DataParallel(model) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(eval_dataset)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
eval_loss = 0.0 | |
nb_eval_steps = 0 | |
model.eval() | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch) | |
inputs = inputs.to(args.device) | |
labels = labels.to(args.device) | |
with torch.no_grad(): | |
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels) | |
lm_loss = outputs[0] | |
eval_loss += lm_loss.mean().item() | |
nb_eval_steps += 1 | |
eval_loss = eval_loss / nb_eval_steps | |
perplexity = torch.exp(torch.tensor(eval_loss)) | |
result = {"perplexity": perplexity} | |
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results {} *****".format(prefix)) | |
for key in sorted(result.keys()): | |
logger.info(" %s = %s", key, str(result[key])) | |
writer.write("%s = %s\n" % (key, str(result[key]))) | |
return result | |
def main(): | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file)." | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
required=True, | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--model_type", type=str, required=True, help="The model architecture to be trained or fine-tuned.", | |
) | |
# Other parameters | |
parser.add_argument( | |
"--eval_data_file", | |
default=None, | |
type=str, | |
help="An optional input evaluation data file to evaluate the perplexity on (a text file).", | |
) | |
parser.add_argument( | |
"--line_by_line", | |
action="store_true", | |
help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.", | |
) | |
parser.add_argument( | |
"--should_continue", action="store_true", help="Whether to continue from latest checkpoint in output_dir" | |
) | |
parser.add_argument( | |
"--model_name_or_path", | |
default=None, | |
type=str, | |
help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.", | |
) | |
parser.add_argument( | |
"--mlm", action="store_true", help="Train with masked-language modeling loss instead of language modeling." | |
) | |
parser.add_argument( | |
"--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss" | |
) | |
parser.add_argument( | |
"--config_name", | |
default=None, | |
type=str, | |
help="Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
default=None, | |
type=str, | |
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path. If both are None, initialize a new tokenizer.", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
default=None, | |
type=str, | |
help="Optional directory to store the pre-trained models downloaded from s3 (instead of the default one)", | |
) | |
parser.add_argument( | |
"--block_size", | |
default=-1, | |
type=int, | |
help="Optional input sequence length after tokenization." | |
"The training dataset will be truncated in block of this size for training." | |
"Default to the model max input length for single sentence inputs (take into account special tokens).", | |
) | |
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") | |
parser.add_argument( | |
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step." | |
) | |
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.") | |
parser.add_argument( | |
"--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation." | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") | |
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument( | |
"--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform." | |
) | |
parser.add_argument( | |
"--max_steps", | |
default=-1, | |
type=int, | |
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
) | |
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") | |
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") | |
parser.add_argument( | |
"--save_total_limit", | |
type=int, | |
default=None, | |
help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default", | |
) | |
parser.add_argument( | |
"--eval_all_checkpoints", | |
action="store_true", | |
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number", | |
) | |
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") | |
parser.add_argument( | |
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" | |
) | |
parser.add_argument( | |
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" | |
) | |
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
) | |
parser.add_argument( | |
"--fp16_opt_level", | |
type=str, | |
default="O1", | |
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html", | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") | |
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") | |
args = parser.parse_args() | |
if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm: | |
raise ValueError( | |
"BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm " | |
"flag (masked language modeling)." | |
) | |
if args.eval_data_file is None and args.do_eval: | |
raise ValueError( | |
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " | |
"or remove the --do_eval argument." | |
) | |
if args.should_continue: | |
sorted_checkpoints = _sorted_checkpoints(args) | |
if len(sorted_checkpoints) == 0: | |
raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.") | |
else: | |
args.model_name_or_path = sorted_checkpoints[-1] | |
if ( | |
os.path.exists(args.output_dir) | |
and os.listdir(args.output_dir) | |
and args.do_train | |
and not args.overwrite_output_dir | |
): | |
raise ValueError( | |
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( | |
args.output_dir | |
) | |
) | |
# Setup distant debugging if needed | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
# Setup CUDA, GPU & distributed training | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = torch.cuda.device_count() | |
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
torch.cuda.set_device(args.local_rank) | |
device = torch.device("cuda", args.local_rank) | |
torch.distributed.init_process_group(backend="nccl") | |
args.n_gpu = 1 | |
args.device = device | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
args.local_rank, | |
device, | |
args.n_gpu, | |
bool(args.local_rank != -1), | |
args.fp16, | |
) | |
# Set seed | |
set_seed(args) | |
# Load pretrained model and tokenizer | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab | |
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
if args.config_name: | |
config = config_class.from_pretrained(args.config_name, cache_dir=args.cache_dir) | |
elif args.model_name_or_path: | |
config = config_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir) | |
else: | |
config = config_class() | |
if args.tokenizer_name: | |
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir) | |
elif args.model_name_or_path: | |
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir) | |
else: | |
raise ValueError( | |
"You are instantiating a new {} tokenizer. This is not supported, but you can do it from another script, save it," | |
"and load it from here, using --tokenizer_name".format(tokenizer_class.__name__) | |
) | |
if args.block_size <= 0: | |
args.block_size = tokenizer.max_len_single_sentence | |
# Our input block size will be the max possible for the model | |
else: | |
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence) | |
if args.model_name_or_path: | |
model = model_class.from_pretrained( | |
args.model_name_or_path, | |
from_tf=bool(".ckpt" in args.model_name_or_path), | |
config=config, | |
cache_dir=args.cache_dir, | |
) | |
else: | |
logger.info("Training new model from scratch") | |
model = model_class(config=config) | |
model.to(args.device) | |
if args.local_rank == 0: | |
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab | |
logger.info("Training/evaluation parameters %s", args) | |
# Training | |
if args.do_train: | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache | |
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False) | |
if args.local_rank == 0: | |
torch.distributed.barrier() | |
global_step, tr_loss = train(args, train_dataset, model, tokenizer) | |
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained() | |
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): | |
# Create output directory if needed | |
if args.local_rank in [-1, 0]: | |
os.makedirs(args.output_dir, exist_ok=True) | |
logger.info("Saving model checkpoint to %s", args.output_dir) | |
# Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
# They can then be reloaded using `from_pretrained()` | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(args.output_dir) | |
tokenizer.save_pretrained(args.output_dir) | |
# Good practice: save your training arguments together with the trained model | |
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = model_class.from_pretrained(args.output_dir) | |
tokenizer = tokenizer_class.from_pretrained(args.output_dir) | |
model.to(args.device) | |
# Evaluation | |
results = {} | |
if args.do_eval and args.local_rank in [-1, 0]: | |
checkpoints = [args.output_dir] | |
if args.eval_all_checkpoints: | |
checkpoints = list( | |
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) | |
) | |
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging | |
logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
for checkpoint in checkpoints: | |
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" | |
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" | |
model = model_class.from_pretrained(checkpoint) | |
model.to(args.device) | |
result = evaluate(args, model, tokenizer, prefix=prefix) | |
result = dict((k + "_{}".format(global_step), v) for k, v in result.items()) | |
results.update(result) | |
return results | |
if __name__ == "__main__": | |
main() | |