Spaces:
Runtime error
Runtime error
Converting Tensorflow Checkpoints | |
================================================ | |
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints in models than be loaded using the ``from_pretrained`` methods of the library. | |
.. note:: | |
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) | |
available in any transformers >= 2.3.0 installation. | |
The documentation below reflects the **transformers-cli convert** command format. | |
BERT | |
^^^^ | |
You can convert any TensorFlow checkpoint for BERT (in particular `the pre-trained models released by Google <https://github.com/google-research/bert#pre-trained-models>`_\ ) in a PyTorch save file by using the `convert_tf_checkpoint_to_pytorch.py <https://github.com/huggingface/transformers/blob/master/transformers/convert_tf_checkpoint_to_pytorch.py>`_ script. | |
This CLI takes as input a TensorFlow checkpoint (three files starting with ``bert_model.ckpt``\ ) and the associated configuration file (\ ``bert_config.json``\ ), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using ``torch.load()`` (see examples in `run_bert_extract_features.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_extract_features.py>`_\ , `run_bert_classifier.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_classifier.py>`_ and `run_bert_squad.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_squad.py>`_\ ). | |
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with ``bert_model.ckpt``\ ) but be sure to keep the configuration file (\ ``bert_config.json``\ ) and the vocabulary file (\ ``vocab.txt``\ ) as these are needed for the PyTorch model too. | |
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (\ ``pip install tensorflow``\ ). The rest of the repository only requires PyTorch. | |
Here is an example of the conversion process for a pre-trained ``BERT-Base Uncased`` model: | |
.. code-block:: shell | |
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12 | |
<<<<<<< HEAD | |
transformers-cli --model_type bert \ | |
======= | |
transformers-cli convert --model_type bert \ | |
>>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232 | |
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \ | |
--config $BERT_BASE_DIR/bert_config.json \ | |
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin | |
You can download Google's pre-trained models for the conversion `here <https://github.com/google-research/bert#pre-trained-models>`__. | |
OpenAI GPT | |
^^^^^^^^^^ | |
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint save as the same format than OpenAI pretrained model (see `here <https://github.com/openai/finetune-transformer-lm>`__\ ) | |
.. code-block:: shell | |
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights | |
<<<<<<< HEAD | |
transformers-cli --model_type gpt \ | |
======= | |
transformers-cli convert --model_type gpt \ | |
>>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232 | |
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
[--config OPENAI_GPT_CONFIG] \ | |
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \ | |
OpenAI GPT-2 | |
^^^^^^^^^^^^ | |
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see `here <https://github.com/openai/gpt-2>`__\ ) | |
.. code-block:: shell | |
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights | |
<<<<<<< HEAD | |
transformers-cli --model_type gpt2 \ | |
======= | |
transformers-cli convert --model_type gpt2 \ | |
>>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232 | |
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
[--config OPENAI_GPT2_CONFIG] \ | |
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK] | |
Transformer-XL | |
^^^^^^^^^^^^^^ | |
Here is an example of the conversion process for a pre-trained Transformer-XL model (see `here <https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models>`__\ ) | |
.. code-block:: shell | |
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint | |
<<<<<<< HEAD | |
transformers-cli --model_type transfo_xl \ | |
======= | |
transformers-cli convert --model_type transfo_xl \ | |
>>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232 | |
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
[--config TRANSFO_XL_CONFIG] \ | |
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK] | |
XLNet | |
^^^^^ | |
Here is an example of the conversion process for a pre-trained XLNet model: | |
.. code-block:: shell | |
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint | |
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config | |
<<<<<<< HEAD | |
transformers-cli --model_type xlnet \ | |
======= | |
transformers-cli convert --model_type xlnet \ | |
>>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232 | |
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \ | |
--config $TRANSFO_XL_CONFIG_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
[--finetuning_task_name XLNET_FINETUNED_TASK] \ | |
XLM | |
^^^ | |
Here is an example of the conversion process for a pre-trained XLM model: | |
.. code-block:: shell | |
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint | |
<<<<<<< HEAD | |
transformers-cli --model_type xlm \ | |
======= | |
transformers-cli convert --model_type xlm \ | |
>>>>>>> bfec203d4ed95255619e7e2f28c9040744a16232 | |
--tf_checkpoint $XLM_CHECKPOINT_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT | |
[--config XML_CONFIG] \ | |
[--finetuning_task_name XML_FINETUNED_TASK] |