Spaces:
Runtime error
Runtime error
File size: 18,369 Bytes
75466df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
#!/usr/bin/env python3
# Copyright 2018 CMU and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Bertology: this script shows how you can explore the internals of the models in the library to:
- compute the entropy of the head attentions
- compute the importance of each head
- prune (remove) the low importance head.
Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650)
which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1
"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, Subset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from run_glue import ALL_MODELS, MODEL_CLASSES, load_and_cache_examples, set_seed
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
logger = logging.getLogger(__name__)
def entropy(p):
""" Compute the entropy of a probability distribution """
plogp = p * torch.log(p)
plogp[p == 0] = 0
return -plogp.sum(dim=-1)
def print_2d_tensor(tensor):
""" Print a 2D tensor """
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
for row in range(len(tensor)):
if tensor.dtype != torch.long:
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
else:
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))
def compute_heads_importance(
args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None
):
""" This method shows how to compute:
- head attention entropy
- head importance scores according to http://arxiv.org/abs/1905.10650
"""
# Prepare our tensors
n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
head_importance = torch.zeros(n_layers, n_heads).to(args.device)
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
if head_mask is None:
head_mask = torch.ones(n_layers, n_heads).to(args.device)
head_mask.requires_grad_(requires_grad=True)
preds = None
labels = None
tot_tokens = 0.0
for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(t.to(args.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
outputs = model(
input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids, head_mask=head_mask
)
loss, logits, all_attentions = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
if compute_entropy:
for layer, attn in enumerate(all_attentions):
masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
# Also store our logits/labels if we want to compute metrics afterwards
if preds is None:
preds = logits.detach().cpu().numpy()
labels = label_ids.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0)
tot_tokens += input_mask.float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
exponent = 2
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent)
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20
if not args.dont_normalize_global_importance:
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print/save matrices
np.save(os.path.join(args.output_dir, "attn_entropy.npy"), attn_entropy.detach().cpu().numpy())
np.save(os.path.join(args.output_dir, "head_importance.npy"), head_importance.detach().cpu().numpy())
logger.info("Attention entropies")
print_2d_tensor(attn_entropy)
logger.info("Head importance scores")
print_2d_tensor(head_importance)
logger.info("Head ranked by importance scores")
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(
head_importance.numel(), device=args.device
)
head_ranks = head_ranks.view_as(head_importance)
print_2d_tensor(head_ranks)
return attn_entropy, head_importance, preds, labels
def mask_heads(args, model, eval_dataloader):
""" This method shows how to mask head (set some heads to zero), to test the effect on the network,
based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
"""
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
original_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
new_head_mask = torch.ones_like(head_importance)
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
current_score = original_score
while current_score >= original_score * args.masking_threshold:
head_mask = new_head_mask.clone() # save current head mask
# heads from least important to most - keep only not-masked heads
head_importance[head_mask == 0.0] = float("Inf")
current_heads_to_mask = head_importance.view(-1).sort()[1]
if len(current_heads_to_mask) <= num_to_mask:
break
# mask heads
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
new_head_mask = new_head_mask.view(-1)
new_head_mask[current_heads_to_mask] = 0.0
new_head_mask = new_head_mask.view_as(head_mask)
print_2d_tensor(new_head_mask)
# Compute metric and head importance again
_, head_importance, preds, labels = compute_heads_importance(
args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask
)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
current_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
logger.info(
"Masking: current score: %f, remaning heads %d (%.1f percents)",
current_score,
new_head_mask.sum(),
new_head_mask.sum() / new_head_mask.numel() * 100,
)
logger.info("Final head mask")
print_2d_tensor(head_mask)
np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy())
return head_mask
def prune_heads(args, model, eval_dataloader, head_mask):
""" This method shows how to prune head (remove heads weights) based on
the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
"""
# Try pruning and test time speedup
# Pruning is like masking but we actually remove the masked weights
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(
args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask
)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_masking = compute_metrics(args.task_name, preds, labels)[args.metric_name]
original_time = datetime.now() - before_time
original_num_params = sum(p.numel() for p in model.parameters())
heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
model.prune_heads(heads_to_prune)
pruned_num_params = sum(p.numel() for p in model.parameters())
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(
args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=None
)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_pruning = compute_metrics(args.task_name, preds, labels)[args.metric_name]
new_time = datetime.now() - before_time
logger.info(
"Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)",
original_num_params,
pruned_num_params,
pruned_num_params / original_num_params * 100,
)
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time / new_time * 100)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
)
parser.add_argument(
"--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--config_name",
default="",
type=str,
help="Pretrained config name or path if not the same as model_name_or_path",
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name_or_path",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances."
)
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument(
"--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers"
)
parser.add_argument(
"--dont_normalize_global_importance",
action="store_true",
help="Don't normalize all importance scores between 0 and 1",
)
parser.add_argument(
"--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy."
)
parser.add_argument(
"--masking_threshold",
default=0.9,
type=float,
help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).",
)
parser.add_argument(
"--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step."
)
parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.")
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, sequences shorter padded.",
)
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
args.n_gpu = 1
torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
# Set seeds
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = ""
for key in MODEL_CLASSES:
if key in args.model_name_or_path.lower():
args.model_type = key # take the first match in model types
break
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
output_attentions=True,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parallel training
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Print/save training arguments
torch.save(args, os.path.join(args.output_dir, "run_args.bin"))
logger.info("Training/evaluation parameters %s", args)
# Prepare dataset for the GLUE task
eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
if args.data_subset > 0:
eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data)))))
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
# Compute head entropy and importance score
compute_heads_importance(args, model, eval_dataloader)
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
head_mask = mask_heads(args, model, eval_dataloader)
prune_heads(args, model, eval_dataloader, head_mask)
if __name__ == "__main__":
main()
|