Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import pickle | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
# import preproses | |
preproses = pickle.load(open("preproses.pkl", "rb")) | |
# import model | |
model = load_model('model.h5') | |
#title | |
st.title("Customer Churn Predictions") | |
st.write("Created by Sihar Pangaribuan") | |
# User imput | |
user_id = st.text_input('Input ID of a customer', value='') | |
age = st.number_input(label='Age of a customer', min_value=10, max_value=64, value=10, step=1) | |
gender = st.selectbox(label='Gender of a customer', options=['F','M']) | |
region_category = st.selectbox(label='Select Region that a customer belongs to', options=['City', 'Village', 'Town']) | |
membership_category = st.selectbox(label='Select Category of the membership that a customer is using', options=['No Membership', 'Basic Membership', 'Silver Membership', 'Premium Membership', 'Gold Membership', 'Platinum Membership']) | |
joining_date = st.text_input('Date when a customer became a member', value='') | |
joined_through_referral = st.selectbox(label='Whether a customer joined using any referral code or ID ?', options=['Yes','No']) | |
preferred_offer_types = st.selectbox(label='Select Type of offer that a customer prefers', options=['Without Offers', 'Credit/Debit Card Offers', 'Gift Vouchers/Coupons']) | |
medium_of_operation = st.selectbox(label='Select Medium of operation that a customer uses for transactions', options=['Desktop', 'Smartphone', 'Both']) | |
internet_option = st.selectbox(label='Select Type of internet service a customer uses', options=['Wi-Fi', 'Fiber_Optic', 'Mobile_Data']) | |
last_visit_time = st.text_input('Input The last time a customer visited the website', value='') | |
days_since_last_login = st.number_input(label='Imput Number of days since a customer last logged into the website', min_value=-999, max_value=26, value=-999, step=1) | |
avg_time_spent = st.number_input(label='Imput Average time spent by a customer on the website', min_value=0.0, max_value=3235.6, value=0.0, step=0.1) | |
avg_transaction_value = st.number_input(label='Imput Average transaction value of a customer', min_value=800.46, max_value=99914.05, value=800.46, step=0.1) | |
avg_frequency_login_days = st.number_input(label='Imput Number of times a customer has logged in to the website', min_value=0.0, max_value=73.07, value=0.0, step=0.1) | |
points_in_wallet = st.number_input(label='Imput Points awarded to a customer on each transaction', min_value=0.0, max_value=2069.06, value=0.0, step=0.1) | |
used_special_discount = st.selectbox(label='Whether a customer uses special discounts offered?', options=['Yes','No']) | |
offer_application_preference = st.selectbox(label='Whether a customer prefers offers?', options=['Yes','No']) | |
past_complaint = st.selectbox(label='Whether a customer has raised any complaints?', options=['Yes','No']) | |
complaint_status = st.selectbox(label='Select the complaint status', options=['No Information Available', 'Not Applicable', 'Unsolved', 'Solved', 'Solved in Follow-up']) | |
feedback = st.selectbox(label='Select the feedback', options=['Poor Website', 'Poor Customer Service', 'Too many ads', 'Poor Product Quality', 'No reason specified', 'Products always in Stock', 'Reasonable Price', 'Quality Customer Care', 'User Friendly Website']) | |
# Convert ke data frame | |
data = pd.DataFrame({ | |
'user_id':[user_id], | |
'age':[age], | |
'gender':[gender], | |
'region_category':[region_category], | |
'membership_category':[membership_category], | |
'joining_date':[joining_date], | |
'joined_through_referral':[joined_through_referral], | |
'preferred_offer_types':[preferred_offer_types], | |
'medium_of_operation':[medium_of_operation], | |
'internet_option':[internet_option], | |
'last_visit_time':[last_visit_time], | |
'days_since_last_login':[days_since_last_login], | |
'avg_time_spent':[avg_time_spent], | |
'avg_transaction_value':[avg_transaction_value], | |
'avg_frequency_login_days':[avg_frequency_login_days], | |
'points_in_wallet':[points_in_wallet], | |
'used_special_discount':[used_special_discount], | |
'offer_application_preference':[offer_application_preference], | |
'past_complaint':[past_complaint], | |
'complaint_status':[complaint_status], | |
'feedback':[feedback] | |
}) | |
# Transfom data | |
data = preproses.transform(data) | |
# model predict | |
if st.button('Predict'): | |
prediction = model.predict(data).tolist()[0] | |
if prediction == 1: | |
prediction = 'Churn' | |
else: | |
prediction = 'Not Churn' | |
st.write('The Prediction is: ') | |
st.write(prediction) | |