import streamlit as st import pandas as pd import pickle import tensorflow as tf from tensorflow.keras.models import load_model # import preproses preproses = pickle.load(open("preproses.pkl", "rb")) # import model model = load_model('model.h5') #title st.title("Customer Churn Predictions") st.write("Created by Sihar Pangaribuan") # User imput user_id = st.text_input('Input ID of a customer', value='') age = st.number_input(label='Age of a customer', min_value=10, max_value=64, value=10, step=1) gender = st.selectbox(label='Gender of a customer', options=['F','M']) region_category = st.selectbox(label='Select Region that a customer belongs to', options=['City', 'Village', 'Town']) membership_category = st.selectbox(label='Select Category of the membership that a customer is using', options=['No Membership', 'Basic Membership', 'Silver Membership', 'Premium Membership', 'Gold Membership', 'Platinum Membership']) joining_date = st.text_input('Date when a customer became a member', value='') joined_through_referral = st.selectbox(label='Whether a customer joined using any referral code or ID ?', options=['Yes','No']) preferred_offer_types = st.selectbox(label='Select Type of offer that a customer prefers', options=['Without Offers', 'Credit/Debit Card Offers', 'Gift Vouchers/Coupons']) medium_of_operation = st.selectbox(label='Select Medium of operation that a customer uses for transactions', options=['Desktop', 'Smartphone', 'Both']) internet_option = st.selectbox(label='Select Type of internet service a customer uses', options=['Wi-Fi', 'Fiber_Optic', 'Mobile_Data']) last_visit_time = st.text_input('Input The last time a customer visited the website', value='') days_since_last_login = st.number_input(label='Imput Number of days since a customer last logged into the website', min_value=-999, max_value=26, value=-999, step=1) avg_time_spent = st.number_input(label='Imput Average time spent by a customer on the website', min_value=0.0, max_value=3235.6, value=0.0, step=0.1) avg_transaction_value = st.number_input(label='Imput Average transaction value of a customer', min_value=800.46, max_value=99914.05, value=800.46, step=0.1) avg_frequency_login_days = st.number_input(label='Imput Number of times a customer has logged in to the website', min_value=0.0, max_value=73.07, value=0.0, step=0.1) points_in_wallet = st.number_input(label='Imput Points awarded to a customer on each transaction', min_value=0.0, max_value=2069.06, value=0.0, step=0.1) used_special_discount = st.selectbox(label='Whether a customer uses special discounts offered?', options=['Yes','No']) offer_application_preference = st.selectbox(label='Whether a customer prefers offers?', options=['Yes','No']) past_complaint = st.selectbox(label='Whether a customer has raised any complaints?', options=['Yes','No']) complaint_status = st.selectbox(label='Select the complaint status', options=['No Information Available', 'Not Applicable', 'Unsolved', 'Solved', 'Solved in Follow-up']) feedback = st.selectbox(label='Select the feedback', options=['Poor Website', 'Poor Customer Service', 'Too many ads', 'Poor Product Quality', 'No reason specified', 'Products always in Stock', 'Reasonable Price', 'Quality Customer Care', 'User Friendly Website']) # Convert ke data frame data = pd.DataFrame({ 'user_id':[user_id], 'age':[age], 'gender':[gender], 'region_category':[region_category], 'membership_category':[membership_category], 'joining_date':[joining_date], 'joined_through_referral':[joined_through_referral], 'preferred_offer_types':[preferred_offer_types], 'medium_of_operation':[medium_of_operation], 'internet_option':[internet_option], 'last_visit_time':[last_visit_time], 'days_since_last_login':[days_since_last_login], 'avg_time_spent':[avg_time_spent], 'avg_transaction_value':[avg_transaction_value], 'avg_frequency_login_days':[avg_frequency_login_days], 'points_in_wallet':[points_in_wallet], 'used_special_discount':[used_special_discount], 'offer_application_preference':[offer_application_preference], 'past_complaint':[past_complaint], 'complaint_status':[complaint_status], 'feedback':[feedback] }) # Transfom data data = preproses.transform(data) # model predict if st.button('Predict'): prediction = model.predict(data).tolist()[0] if prediction == 1: prediction = 'Churn' else: prediction = 'Not Churn' st.write('The Prediction is: ') st.write(prediction)