Spaces:
Runtime error
Runtime error
File size: 26,456 Bytes
de4cd5c 1d8bf70 e0db2be de4cd5c c0c75fc de4cd5c c0c75fc de4cd5c 76b915d de4cd5c 536ecfa de4cd5c 76b915d de4cd5c c0c75fc de4cd5c 76b915d 536ecfa e99f912 de4cd5c 7bf33dc de4cd5c 7bf33dc de4cd5c 7bf33dc de4cd5c 7bf33dc de4cd5c 7bf33dc de4cd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
# https://huggingface.co/spaces/MAGAer13/mPLUG-Owl/blob/main/app.py
# https://huggingface.co/spaces/MAGAer13/mPLUG-Owl2
# https://github.com/allenai/s2-folks/blob/main/examples/python/find_and_recommend_papers/find_papers.py
# https://www.gradio.app/guides/creating-a-chatbot-fast
# https://huggingface.co/spaces/librarian-bots/recommend_similar_papers/blob/main/app.py
# https://huggingface.co/spaces/badayvedat/LLaVA
"""
This file demos a simple chatbot based on gradio and openai api
"""
import pathlib, json
import time
import gradio as gr
import os
import re
import argparse
import requests
import openai
from typing import Any
import datetime
import pandas as pd
from evaluate import load
# Set openai credentials
openai.api_key = os.environ.get("OPENAI_API_KEY")
S2_API_KEY = os.getenv('S2_API_KEY')
# Function to set the OpenAI API key
def set_apikey(api_key):
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = api_key
return "OpenAI API key is Set"
def get_conv_log_filename():
t = datetime.datetime.now()
cur_dir = pathlib.Path(__file__).parent.resolve()
log_dir = f"{cur_dir}/logs/"
os.makedirs(log_dir, exist_ok=True)
name = os.path.join(log_dir, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def vote_last_response(state, vote_type, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"state": state, #.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, request: gr.Request):
# logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", request)
return ""
def downvote_last_response(state, request: gr.Request):
# logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", request)
return ""
example_abstract = """We explore the zero-shot abilities of recent large language models (LLMs) for the task of writing the literature review of a scientific research paper conditioned on its abstract and the content of related papers."""
examples_html = [
f"<div style='text-align: left;'>{example_abstract}</div>"
]
# Create a custom HTML block to left-align text
custom_html = "<div style='text-align: left;'>Examples:</div>"
title_markdown = ("""
<h1 align="center"><a href=""><img src="/file=resources/download.png", alt="Writing Assistant - LitCraft" border="0" style="margin: 0 auto; height: 50px;" /></a> </h1>
<h2 align="center">π₯ LitLLM: A Toolkit for Scientific Literature Review</h2>
""")
# <h5 align="center"> If you like our project, please give us a star β¨ on Github for latest update. </h2>
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user data for future research.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
block_css = """
h1 {
text-align: center;
display:block;
}
h2 {
text-align: center;
display:block;
}
#buttons button {
min-width: min(120px,100%);
}
#display_mrkdwn {
display: block;
border-width: var(--block-border-width);
border-color: var(--block-border-color);
border-radius: var(--block-radius);
background: var(--block-background-fill);
padding: var(--input-padding);
}
.gallery.svelte-1viwdyg {
text-align: justify;
}
"""
def parse_arxiv_id_from_paper_url(url):
arxiv_id = url.split("/")[-1]
if arxiv_id[-4:] == ".pdf":
arxiv_id = arxiv_id[:-4]
return arxiv_id
def load_json(path: str) -> Any:
"""
This function opens and JSON file path
and loads in the JSON file.
:param path: Path to JSON file
:type path: str
:return: the loaded JSON file
:rtype: dict
"""
with open(path, "r", encoding="utf-8") as file:
json_object = json.load(file)
return json_object
def load_all_prompts(file_path: str = None) -> str:
"""
Loads the api key from json file path
:param file_path:
:return:
"""
cur_dir = pathlib.Path(__file__).parent.resolve()
# Load prompts from file
if not file_path:
# Default file path
file_path = f"{cur_dir}/resources/prompts.json"
prompts = load_json(file_path)
return prompts
def run_open_ai_api(json_data, model_name="gpt-4", max_tokens: int = 500, temperature: float = 0.2) -> str:
"""
This function actually calls the OpenAI API
Models such as gpt-4-32k, gpt-4-1106-preview
:param json_data:
:return:
"""
completion = openai.ChatCompletion.create(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"{json_data['prompt']}"},
],
)
# stream=True
# partial_message = ""
# for chunk in completion:
# if len(chunk['choices'][0]['delta']) != 0:
# partial_message = partial_message + chunk['choices'][0]['delta']['content']
# yield partial_message
return completion["choices"][0]["message"]["content"]
def format_results_into_markdown(recommendations):
comment = "The following papers were found by the Semantic Scholar API \n\n"
for index, r in enumerate(recommendations):
# hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
# comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
comment += f"[{index+1}] [{r['title']}]({r['url']}) ({r['year']}) Cited by {r['citationCount']} <br>"
return comment
def find_basis_paper(query, num_papers_api=20):
fields = 'title,url,abstract,citationCount,journal,isOpenAccess,fieldsOfStudy,year,journal'
rsp = requests.get('https://api.semanticscholar.org/graph/v1/paper/search',
headers={'X-API-KEY': S2_API_KEY},
params={'query': query, 'limit': num_papers_api, 'fields': fields})
rsp.raise_for_status()
results = rsp.json()
total = results["total"]
if not total:
print('No matches found. Please try another query.')
print(f'Found {total} results. Showing up to {num_papers_api}.')
papers = results['data']
# df = pd.DataFrame(papers)
return papers #[:result_limit]
def get_recommendations_from_semantic_scholar(url: str, num_papers_api=20):
"""
https://www.semanticscholar.org/product/api/tutorial
"""
fields = 'title,url,abstract,citationCount,journal,isOpenAccess,fieldsOfStudy,year,journal'
arxiv_id = parse_arxiv_id_from_paper_url(url)
query_id = f"ArXiv:{arxiv_id}"
rsp = requests.post(
"https://api.semanticscholar.org/recommendations/v1/papers/",
json={
"positivePaperIds": [query_id],
},
params={"fields": fields, "limit": num_papers_api},
)
results = rsp.json()
papers = results['recommendedPapers']
return papers
def get_paper_data(paper_url):
"""
Retrieves data of one paper based on URL
"""
fields = 'title,url,abstract,citationCount,journal,isOpenAccess,fieldsOfStudy,year,journal'
rsp = requests.get(f"https://api.semanticscholar.org/graph/v1/paper/URL:{paper_url}",
headers={'X-API-KEY': S2_API_KEY},
params={'fields': fields})
results = rsp.json()
return results
def sort_papers(papers, sort_by):
"""
sort by categories: "Relevance", "Citations", "Year
"""
df = pd.DataFrame(papers)
if sort_by == "Citations":
df = df.sort_values(by="citationCount", ascending=False)
elif sort_by == "Year":
df = df.sort_values(by="year", ascending=False)
papers_list = df.to_dict(orient='records')
return papers_list
def get_markdown_query_text(papers):
display_markdown = format_results_into_markdown(papers)
cite_text = format_abstracts_as_references(papers)
return display_markdown, cite_text
def filter_recommendations(recommendations, max_paper_count=5):
# include only arxiv papers
arxiv_paper = [
r for r in recommendations if r["externalIds"].get("ArXiv", None) is not None
]
if len(arxiv_paper) > max_paper_count:
arxiv_paper = arxiv_paper[:max_paper_count]
return arxiv_paper
# def format_recommendation_into_markdown(arxiv_id, recommendations):
# comment = "The following papers were recommended by the Semantic Scholar API \n\n"
# for r in recommendations:
# hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
# comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
# return comment
def format_abstracts_as_references(papers):
# cite_list = ["@cite_1", "@cite_2", "@cite_3"]
cite_text = ""
for index, paper in enumerate(papers):
# citation = f"@cite_{index+1}"
citation = f"{index+1}"
cite_text = f"{cite_text}[{citation}]: {paper['abstract']}\n"
return cite_text
def format_prompt(base_prompt, abstract, cite_text, plan=""):
if plan:
data = f"Abstract: {abstract} \n {cite_text} \n Plan: {plan}"
else:
data = f"Abstract: {abstract} \n {cite_text}"
complete_prompt = f"{base_prompt}\n```{data}```"
return complete_prompt
def get_complete_prompt_for_summarization(base_prompt, data):
"""
This prompt helps in getting keywords to be used by S2 API
"""
complete_prompt = f"{base_prompt}\n```Abstract: {data}```"
return complete_prompt
def check_matching_paper(wer, abstract, papers, check_papers: int =3, wer_threshold = 0.12):
"""
Check if the user put the abstract of already existing paper and it is in the retrieved papers.
Using Word error rate as the metric on the top check_papers
"""
references = [abstract]
for i in range(check_papers):
predictions = [papers[i]['abstract']]
wer_score = wer.compute(predictions=predictions, references=references)
if wer_score < wer_threshold:
papers.pop(i)
return papers
return papers
class GradioChatApp:
"""
Class to define Gradio based chat app
"""
def __init__(self):
self.name = "GradioChatApp"
self.prompts = load_all_prompts()
self.role_template = self.prompts["role_template"]
self.plan_prompt = self.prompts["plan_template"]
self.vanilla_prompt = self.prompts["vanilla_template"]
self.sample_plan = self.prompts["plan"]
self.summarization_prompt = self.prompts["summarization_template"]
self.ranking_prompt = self.prompts["ranking_template"]
self.wer = load("wer")
def add_text(self, history, text, base_paper_textbox, keyword_textbox, rerank: bool = True,
num_papers: int = 3, model_name="gpt-4", sort_by="relevance", temperature = 0.2, max_tokens = 300, num_papers_api: int = 20):
"""
Add text to history
"""
if 'OPENAI_API_KEY' not in os.environ:
raise gr.Error('Upload your OpenAI API key')
history = history + [(f"User provided abstract: \n {text}", None)]
# print("All textboxes:", plan_textbox, base_paper_textbox, keyword_textbox)
try:
if base_paper_textbox:
hist_response = f"Finding recommendations from S2 API based on the paper \n {base_paper_textbox}"
papers = get_recommendations_from_semantic_scholar(base_paper_textbox, num_papers_api)
else:
if keyword_textbox:
query = keyword_textbox
else:
# query = "multi document summarization"
prompt = get_complete_prompt_for_summarization(self.summarization_prompt, text)
json_data = {"prompt": prompt}
query = run_open_ai_api(json_data, model_name=model_name, max_tokens=max_tokens, temperature=temperature)
# print(query)
hist_response = f"LLM summarized keyword query to be used for S2 API: \n {query}"
papers = find_basis_paper(query, num_papers_api)
except:
history = history + [("No papers found using S2. Try providing keywords or a seed paper!", None)]
return history, "", "No papers found", "", "", ""
if not papers:
history = history + [("No papers found using S2. Try providing keywords or changing seed paper!", None)]
return history, "", "No papers found", "", "", ""
history = history + [(hist_response, None)]
# print(rerank, sort_by)
try:
papers = check_matching_paper(self.wer, text, papers)
except:
print("WER failed")
papers = sort_papers(papers, sort_by)
display_markdown, cite_text = get_markdown_query_text(papers)
if rerank == "True":
# print(f"{self.role_template}{self.ranking_prompt}")
try:
complete_prompt = format_prompt(base_prompt=f"{self.role_template} {self.ranking_prompt}", abstract=text, cite_text=cite_text)
json_data = {"prompt": complete_prompt}
response = run_open_ai_api(json_data, model_name=model_name, max_tokens=max_tokens, temperature=temperature)
# print(response)
# [1] > [2] > [4] > [3] > [6] > [5]
new_order = [int(s) for s in re.findall(r'\d+', response)]
# print(new_order)
papers = [papers[i-1] for i in new_order]
except:
print("LLM not able to rerank!")
# If paper based on seed paper, insert it at 0th index
if base_paper_textbox:
try:
base_paper_data = get_paper_data(paper_url=base_paper_textbox)
papers.insert(0,base_paper_data)
except:
print("Cant retrieve data for base paper!")
papers = papers[:num_papers]
display_markdown, cite_text = get_markdown_query_text(papers)
return history, text, display_markdown, cite_text, base_paper_textbox, keyword_textbox
def bot(self, history, cite_text, text, plan_textbox, request: gr.Request, model_name="gpt-4",
temperature = 0.2, max_tokens = 300, regenerate: bool = False):
"""
Calls the openai api
"""
if 'OPENAI_API_KEY' not in os.environ:
raise gr.Error('Upload your OpenAI API key')
# Cache headers, ip address
# if request:
# print("Request headers dictionary:", request.headers)
# print("IP address:", request.client.host)
if cite_text =="":
return "How may I help?"
if plan_textbox:
complete_prompt = format_prompt(base_prompt=self.plan_prompt, abstract=text, cite_text=cite_text, plan=plan_textbox)
# history = history + [(f"Using plan: \n {plan_textbox}", None)]
else:
self.vanilla_prompt = self.vanilla_prompt.format(max_tokens=max_tokens)
# print(self.vanilla_prompt)
complete_prompt = format_prompt(base_prompt=self.vanilla_prompt, abstract=text, cite_text=cite_text, plan="")
# print(complete_prompt)
# if regenerate=="True":
# history.pop()
# print(complete_prompt)
json_data = {"prompt": complete_prompt}
response = run_open_ai_api(json_data, model_name=model_name, max_tokens=max_tokens, temperature=temperature)
history[-1][1] = ""
for character in response:
history[-1][1] += str(character)
time.sleep(0.005)
yield history
# history[-1][1] = response
# time.sleep(1)
# yield history
def launch_app(self):
"""
Gradio app defined here
"""
# Close all apps running on servers
gr.close_all()
textbox = gr.Textbox(lines=2, show_label=False, placeholder="Enter the abstract of your paper", container=False)
plan_textbox = gr.Textbox(show_label=False, placeholder="Enter sentence plan (Default none). Example: Cite [1] on line 2.", container=False)
base_paper_textbox = gr.Textbox(show_label=False, placeholder="Provide link of most relevant paper", container=False)
keyword_textbox = gr.Textbox(show_label=False, placeholder="Enter optional keywords for querying (Default none)", container=False)
with gr.Blocks(title="Writing Assistant", theme=gr.themes.Default(), css=block_css) as demo:
prompt = gr.State()
gr.Markdown(title_markdown)
with gr.Row():
gr.Markdown(f"**Quick start:** Enter the abstract of your paper and press send!")
with gr.Accordion("How to use (click to expand)", open=False):
gr.Markdown(
"""
Search and write literature review for your research idea/proposal or a draft abstract with this powerful AI tool.
TLDR; We query Semantic Scholar (S2) to retrieve relevant papers and optionally rerank them using another LLM.
With the principles of Retrieval Augmented Generation, LLM generates the related work section for your paper.
There are three strategies for AI search:
* We summarize your abstract with GPT-4 to get keywords which are then used to search S2
* You provide keywords that could be used as a search query
* Provide a seed paper used for recommendation
For generation, you could also provide a sentence plan to the LLM which contains the number of sentences and citations to produce
"""
)
with gr.Row():
with gr.Column(scale=3):
# TODO: OpenAI Keys
# with gr.Accordion("OpenAI key", open=False) as key_row:
# with gr.Row():
# api_key = gr.Textbox(placeholder='Enter OpenAI API key', show_label=False, interactive=True, scale=3)
# change_api_key = gr.Button('Change Key', scale=1)
with gr.Accordion("Parameters", open=False) as parameter_row:
# https://platform.openai.com/docs/models/overview
with gr.Row():
model_name = gr.Dropdown(["gpt-3.5-turbo", "gpt-4", "gpt-4-32k", "gpt-4-1106-preview"], value="gpt-4", interactive=True, label="Model", scale=1) # scale=1, min_width=0
llm_rerank = gr.Radio(choices=["True", "False"], value="True", interactive=True, label="LLM Re-rank (May override sorting)", scale=2)
with gr.Row():
num_papers = gr.Slider(minimum=1, maximum=10, value=4, step=1, interactive=True, label="Cite # papers",scale=1)
sort_by = gr.Dropdown(["Relevance", "Citations", "Year"], value="Relevance", interactive=True, label="Sort by", scale=2) # scale=1, min_width=0
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature", scale=1)
max_tokens = gr.Slider(minimum=0, maximum=3000, value=500, step=64, interactive=True, label="Max output tokens", scale=2)
display_1 = gr.Markdown(value=f"Retrieved papers", label="Retrieved papers!", elem_id="display_mrkdwn") #, visible=True)
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="Chatbot", label="LitLLM", height=460)
# with gr.Row():
# gr.Markdown("""**Enter your research idea here!!**""")
with gr.Row():
with gr.Column(scale=3):
with gr.Accordion("Example", open=False) as example_row:
gr.Examples(label="Example: Abstract", examples=[
[example_abstract],
], inputs=[textbox], elem_id="example_abstract")
gr.Examples(label="Example: Query keywords (Optional)", examples=[
["multi document summarization of scientific articles"],
], inputs=[keyword_textbox])
gr.Examples(label="Example: Most relevant paper (Optional)", examples=[
["https://arxiv.org/abs/2010.14235"],
], inputs=[base_paper_textbox])
gr.Examples(label="Example: Sentence plan (Optional)", examples=[
[self.sample_plan],
], inputs=[plan_textbox])
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=6):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row():
gr.Markdown("""Optionally, improve the API Search by either providing keywords or a very relevant seed paper. Seed paper takes priority if provided both.""")
with gr.Row():
with gr.Column(scale=2):
keyword_textbox.render()
with gr.Column(scale=2):
base_paper_textbox.render()
with gr.Row():
gr.Markdown("""Optionally, provide a sentence plan to be used for generation""")
with gr.Row():
with gr.Column(scale=5):
plan_textbox.render()
with gr.Column(scale=2, min_width=50):
plan_generate_btn = gr.Button(value="Regenerate with plan", variant="primary")
# with gr.Row(elem_id="buttons") as button_row:
# upvote_btn = gr.Button(value="π Upvote")
# downvote_btn = gr.Button(value="π Downvote")
# # flag_btn = gr.Button(value="β οΈ Flag", interactive=False)
# # #stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
# regenerate_btn = gr.Button(value="π Regenerate")
# clear_btn = gr.Button(value="ποΈ Clear")
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
# btn_list = [regenerate_btn, clear_btn]
# TODO: OpenAI Keys
# api_key.submit(fn=set_apikey, inputs=[api_key], outputs=[api_key])
# change_api_key.click(fn=set_apikey, inputs=[api_key], outputs=[api_key])
textbox.submit(
self.add_text,
[chatbot, textbox, base_paper_textbox, keyword_textbox, llm_rerank, num_papers, model_name, sort_by, temperature, max_tokens],
[chatbot, textbox, display_1, prompt, base_paper_textbox, keyword_textbox],
queue=False
).then(
self.bot,
[chatbot, prompt, textbox, plan_textbox, model_name, temperature, max_tokens],
[chatbot]
)
submit_btn.click(
self.add_text,
[chatbot, textbox, base_paper_textbox, keyword_textbox, llm_rerank, num_papers, model_name, sort_by, temperature, max_tokens],
[chatbot, textbox, display_1, prompt, base_paper_textbox, keyword_textbox],
queue=False
).then(
self.bot,
[chatbot, prompt, textbox, plan_textbox, model_name, temperature, max_tokens],
[chatbot]
)
plan_generate_btn.click(self.bot,
[chatbot, prompt, textbox, plan_textbox, model_name, temperature, max_tokens],
[chatbot])
# upvote_btn.click(upvote_last_response, prompt, [textbox], queue=False)
# downvote_btn.click(downvote_last_response, prompt, [textbox], queue=False)
# regenerate_btn.click(self.bot,
# [chatbot, prompt, textbox, plan_textbox, model_name, temperature, max_tokens],
# [chatbot])
# # state can also be cached https://github.com/gradio-app/gradio/issues/730
# txt.submit(self.add_text, [chatbot, txt], [chatbot, txt]).then(
# self.bot, chatbot, chatbot
# )
# clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.launch(allowed_paths=["resources/"])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--port", type=int)
parser.add_argument("--concurrency-count", type=int, default=1)
# demo = build_demo()
# demo.queue(concurrency_count=args.concurrency_count,
# status_update_rate=10, api_open=False).launch(server_name=args.host,
# debug=args.debug, server_port=args.port, share=False)
test_app = GradioChatApp()
test_app.launch_app() |