Spaces:
Runtime error
Runtime error
Commit
·
c0c75fc
1
Parent(s):
de4cd5c
Changes for latest gradio
Browse files
app.py
CHANGED
@@ -63,12 +63,6 @@ def downvote_last_response(state, request: gr.Request):
|
|
63 |
return ""
|
64 |
|
65 |
|
66 |
-
# example_abstract = """We explore the zero-shot abilities of recent large language models (LLMs) for the task of writing the literature review of a scientific research paper conditioned on its abstract and the content of related papers.
|
67 |
-
# We propose and examine a novel strategy for literature review generation with an LLM in which we first generate a plan for the review, and then use it to generate the actual text. While modern LLMs can easily be trained or prompted to
|
68 |
-
# condition on all abstracts of papers to be cited to generate a literature review without such intermediate plans, our empirical study shows that these intermediate plans improve the quality of generated literature reviews over vanilla
|
69 |
-
# zero-shot generation. Furthermore, we also create a new test corpus consisting of recent arXiv papers (with full content) posted after both open-sourced and closed-sourced LLMs that were used in our study were released. This allows us
|
70 |
-
# to ensure that our zero-shot experiments do not suffer from test set contamination.
|
71 |
-
# """
|
72 |
|
73 |
example_abstract = """We explore the zero-shot abilities of recent large language models (LLMs) for the task of writing the literature review of a scientific research paper conditioned on its abstract and the content of related papers."""
|
74 |
|
@@ -102,6 +96,16 @@ The service is a research preview intended for non-commercial use only, subject
|
|
102 |
|
103 |
block_css = """
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
#buttons button {
|
106 |
min-width: min(120px,100%);
|
107 |
}
|
@@ -192,7 +196,7 @@ def format_results_into_markdown(recommendations):
|
|
192 |
for index, r in enumerate(recommendations):
|
193 |
# hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
|
194 |
# comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
|
195 |
-
comment += f"[{index+1}] [{r['title']}]({r['url']}) ({r['year']}) Cited by {r['citationCount']}
|
196 |
return comment
|
197 |
|
198 |
def find_basis_paper(query, num_papers_api=20):
|
@@ -487,7 +491,7 @@ class GradioChatApp:
|
|
487 |
llm_rerank = gr.Radio(choices=["True", "False"], value="True", interactive=True, label="LLM Re-rank (May override sorting)")
|
488 |
with gr.Row():
|
489 |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature", scale=1)
|
490 |
-
max_tokens = gr.Slider(minimum=0, maximum=3000, value=
|
491 |
display_1 = gr.Markdown(value=f"Retrieved papers", label="Retrieved papers!", elem_id="display_mrkdwn") #, visible=True)
|
492 |
# with gr.Accordion("Generation Parameters", open=False) as parameter_row:
|
493 |
# top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P")
|
|
|
63 |
return ""
|
64 |
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
example_abstract = """We explore the zero-shot abilities of recent large language models (LLMs) for the task of writing the literature review of a scientific research paper conditioned on its abstract and the content of related papers."""
|
68 |
|
|
|
96 |
|
97 |
block_css = """
|
98 |
|
99 |
+
h1 {
|
100 |
+
text-align: center;
|
101 |
+
display:block;
|
102 |
+
}
|
103 |
+
|
104 |
+
h2 {
|
105 |
+
text-align: center;
|
106 |
+
display:block;
|
107 |
+
}
|
108 |
+
|
109 |
#buttons button {
|
110 |
min-width: min(120px,100%);
|
111 |
}
|
|
|
196 |
for index, r in enumerate(recommendations):
|
197 |
# hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
|
198 |
# comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
|
199 |
+
comment += f"[{index+1}] [{r['title']}]({r['url']}) ({r['year']}) Cited by {r['citationCount']} <br>"
|
200 |
return comment
|
201 |
|
202 |
def find_basis_paper(query, num_papers_api=20):
|
|
|
491 |
llm_rerank = gr.Radio(choices=["True", "False"], value="True", interactive=True, label="LLM Re-rank (May override sorting)")
|
492 |
with gr.Row():
|
493 |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature", scale=1)
|
494 |
+
max_tokens = gr.Slider(minimum=0, maximum=3000, value=500, step=64, interactive=True, label="Max output tokens", scale=2)
|
495 |
display_1 = gr.Markdown(value=f"Retrieved papers", label="Retrieved papers!", elem_id="display_mrkdwn") #, visible=True)
|
496 |
# with gr.Accordion("Generation Parameters", open=False) as parameter_row:
|
497 |
# top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P")
|