shubham142000
commited on
Commit
•
46d835c
1
Parent(s):
2a5d1f7
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
|
4 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
-
from sklearn.neighbors import NearestNeighbors
|
6 |
-
|
7 |
# Function to recommend papers
|
8 |
def recommend_papers(positive_df, unlabelled_df, model="tfidf"):
|
9 |
-
|
10 |
-
|
11 |
-
vectorizer = TfidfVectorizer(stop_words='english')
|
12 |
-
positive_matrix = vectorizer.fit_transform(positive_df['abstract'])
|
13 |
-
unlabelled_matrix = vectorizer.transform(unlabelled_df['abstract'])
|
14 |
-
elif model == "nn":
|
15 |
-
# Use Nearest Neighbors
|
16 |
-
nn_model = NearestNeighbors(n_neighbors=5, algorithm='auto')
|
17 |
-
nn_model.fit(positive_df['abstract'])
|
18 |
-
distances, indices = nn_model.kneighbors(unlabelled_df['abstract'])
|
19 |
-
return indices
|
20 |
-
|
21 |
# Streamlit app
|
22 |
def main():
|
23 |
st.title("ArXiv Feed Recommendations")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
f
|
|
|
|
|
|
|
4 |
# Function to recommend papers
|
5 |
def recommend_papers(positive_df, unlabelled_df, model="tfidf"):
|
6 |
+
pass
|
7 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Streamlit app
|
9 |
def main():
|
10 |
st.title("ArXiv Feed Recommendations")
|