Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
from sklearn.neighbors import NearestNeighbors
|
6 |
+
|
7 |
+
# Function to recommend papers
|
8 |
+
def recommend_papers(positive_df, unlabelled_df, model="tfidf"):
|
9 |
+
if model == "tfidf":
|
10 |
+
# Use TF-IDF Vectorizer
|
11 |
+
vectorizer = TfidfVectorizer(stop_words='english')
|
12 |
+
positive_matrix = vectorizer.fit_transform(positive_df['abstract'])
|
13 |
+
unlabelled_matrix = vectorizer.transform(unlabelled_df['abstract'])
|
14 |
+
elif model == "nn":
|
15 |
+
# Use Nearest Neighbors
|
16 |
+
nn_model = NearestNeighbors(n_neighbors=5, algorithm='auto')
|
17 |
+
nn_model.fit(positive_df['abstract'])
|
18 |
+
distances, indices = nn_model.kneighbors(unlabelled_df['abstract'])
|
19 |
+
return indices
|
20 |
+
|
21 |
+
# Streamlit app
|
22 |
+
def main():
|
23 |
+
st.title("ArXiv Feed Recommendations")
|
24 |
+
|
25 |
+
# User input for model selection
|
26 |
+
model = st.selectbox("Select Model", ["TF-IDF", "Nearest Neighbors"])
|
27 |
+
|
28 |
+
# Upload CSV files
|
29 |
+
st.subheader("Upload Positive Labeled CSV")
|
30 |
+
positive_file = st.file_uploader("Upload CSV", type=['csv'])
|
31 |
+
st.subheader("Upload Unlabelled Data CSV")
|
32 |
+
unlabelled_file = st.file_uploader("Upload CSV", type=['csv'])
|
33 |
+
|
34 |
+
if positive_file is not None and unlabelled_file is not None:
|
35 |
+
# Read CSV files
|
36 |
+
positive_df = pd.read_csv(positive_file)
|
37 |
+
unlabelled_df = pd.read_csv(unlabelled_file)
|
38 |
+
|
39 |
+
# Show uploaded data
|
40 |
+
st.subheader("Positive Labeled Data")
|
41 |
+
st.write(positive_df)
|
42 |
+
st.subheader("Unlabelled Data")
|
43 |
+
st.write(unlabelled_df)
|
44 |
+
|
45 |
+
# Button to trigger recommendation
|
46 |
+
if st.button("Recommend"):
|
47 |
+
# Call recommend_papers function
|
48 |
+
recommended_indices = recommend_papers(positive_df, unlabelled_df, model.lower())
|
49 |
+
st.write(recommended_indices)
|
50 |
+
|
51 |
+
# Download CSV
|
52 |
+
st.markdown(get_csv_download_link(recommended_indices), unsafe_allow_html=True)
|
53 |
+
|
54 |
+
# Function to generate a download link for CSV
|
55 |
+
def get_csv_download_link(data):
|
56 |
+
csv = data.to_csv(index=False)
|
57 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
58 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="recommendations.csv">Download CSV</a>'
|
59 |
+
return href
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
main()
|