Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import BertTokenizer
|
4 |
import torch.nn.functional as F
|
5 |
|
6 |
# Load model and tokenizer from Hugging Face
|
@@ -25,12 +25,13 @@ class IndoBERTMultiTaskClassifier(torch.nn.Module):
|
|
25 |
|
26 |
return logits_task1, logits_task2
|
27 |
|
28 |
-
# Load model
|
29 |
model = IndoBERTMultiTaskClassifier(
|
30 |
bert_model_name=model_name,
|
31 |
num_labels_task1=3, # Adjust with your task1 classes
|
32 |
num_labels_task2=3 # Adjust with your task2 classes
|
33 |
)
|
|
|
34 |
model.eval()
|
35 |
|
36 |
# Define label mappings
|
@@ -62,8 +63,8 @@ iface = gr.Interface(
|
|
62 |
fn=classify,
|
63 |
inputs="text",
|
64 |
outputs=[
|
65 |
-
gr.
|
66 |
-
gr.
|
67 |
],
|
68 |
title="Multitask IndoBERT: Fake Review & Sentiment Classification",
|
69 |
description="Enter a skincare product review in Indonesian and the model will classify it as fake or trusted, and determine the sentiment.",
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import BertTokenizer
|
4 |
import torch.nn.functional as F
|
5 |
|
6 |
# Load model and tokenizer from Hugging Face
|
|
|
25 |
|
26 |
return logits_task1, logits_task2
|
27 |
|
28 |
+
# Load the model checkpoint into your multitask model class
|
29 |
model = IndoBERTMultiTaskClassifier(
|
30 |
bert_model_name=model_name,
|
31 |
num_labels_task1=3, # Adjust with your task1 classes
|
32 |
num_labels_task2=3 # Adjust with your task2 classes
|
33 |
)
|
34 |
+
model.load_state_dict(torch.load("pytorch_model.bin", map_location=torch.device('cpu')))
|
35 |
model.eval()
|
36 |
|
37 |
# Define label mappings
|
|
|
63 |
fn=classify,
|
64 |
inputs="text",
|
65 |
outputs=[
|
66 |
+
gr.Label(label="Fake Review Detection"),
|
67 |
+
gr.Label(label="Sentiment Classification")
|
68 |
],
|
69 |
title="Multitask IndoBERT: Fake Review & Sentiment Classification",
|
70 |
description="Enter a skincare product review in Indonesian and the model will classify it as fake or trusted, and determine the sentiment.",
|