shobrunjb commited on
Commit
f7be72d
·
verified ·
1 Parent(s): 9758bca

new update example

Browse files
Files changed (1) hide show
  1. app.py +19 -18
app.py CHANGED
@@ -51,26 +51,27 @@ def classify(text):
51
  probs_task1 = F.softmax(logits_task1, dim=1).cpu().numpy()[0] # Extract the first batch item
52
  probs_task2 = F.softmax(logits_task2, dim=1).cpu().numpy()[0] # Extract the first batch item
53
 
54
- # Predict label with highest probability
55
- pred_task1 = label_mapping_task1[probs_task1.argmax()]
56
- pred_task2 = label_mapping_task2[probs_task2.argmax()]
57
-
58
- # Format probabilities as percentages
59
- probs_task1_str = ", ".join([f"{label}: {prob*100:.2f}%" for label, prob in zip(label_mapping_task1, probs_task1)])
60
- probs_task2_str = ", ".join([f"{label}: {prob*100:.2f}%" for label, prob in zip(label_mapping_task2, probs_task2)])
61
-
62
- # Combine label predictions with their probabilities
63
- result_task1 = f"{pred_task1} ({probs_task1_str})"
64
- result_task2 = f"{pred_task2} ({probs_task2_str})"
65
 
66
  return result_task1, result_task2
67
 
68
- # Gradio Interface
69
- iface = gr.Interface(fn=classify,
70
- inputs="text",
71
- outputs=[gr.Label(label="Fake Review Detection"),
72
- gr.Label(label="Sentiment Classification")],
73
- title="Multitask IndoBERT: Fake Review & Sentiment Classification",
74
- description="Enter a skincare product review in Indonesian and the model will classify it as fake or trusted, and determine the sentiment.")
 
 
 
 
 
 
 
 
 
75
 
76
  iface.launch()
 
51
  probs_task1 = F.softmax(logits_task1, dim=1).cpu().numpy()[0] # Extract the first batch item
52
  probs_task2 = F.softmax(logits_task2, dim=1).cpu().numpy()[0] # Extract the first batch item
53
 
54
+ # Map probabilities to their corresponding labels
55
+ result_task1 = {label: prob for label, prob in zip(label_mapping_task1, probs_task1)}
56
+ result_task2 = {label: prob for label, prob in zip(label_mapping_task2, probs_task2)}
 
 
 
 
 
 
 
 
57
 
58
  return result_task1, result_task2
59
 
60
+ # Gradio Interface with percentage bars
61
+ iface = gr.Interface(
62
+ fn=classify,
63
+ inputs="text",
64
+ outputs=[
65
+ gr.outputs.Label(label="Fake Review Detection"),
66
+ gr.outputs.Label(label="Sentiment Classification")
67
+ ],
68
+ title="Multitask IndoBERT: Fake Review & Sentiment Classification",
69
+ description="Enter a skincare product review in Indonesian and the model will classify it as fake or trusted, and determine the sentiment.",
70
+ examples=[
71
+ ["Jokowi sangat kecewa dengan POLRI atas kerusuhan yang terjadi di Malang"],
72
+ ["Lesti marah terhadap perlakuan KDRT yang dilakukan oleh Bilar"],
73
+ ["Ungkapan rasa bahagia diutarakan oleh Coki Pardede karena kebebasannya dari penjara"]
74
+ ]
75
+ )
76
 
77
  iface.launch()