File size: 14,688 Bytes
959622f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d59a98
959622f
0d59a98
959622f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d59a98
959622f
0d59a98
959622f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d59a98
959622f
 
0d59a98
959622f
0d59a98
 
959622f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d59a98
959622f
0d59a98
959622f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import gradio as gr

import transformers 
import torch
#import neptune
#from knockknock import slack_sender
from transformers import *
#import glob 
from transformers import BertTokenizer
from transformers import BertForSequenceClassification, AdamW, BertConfig
import random
import pandas as pd
from transformers import BertTokenizer
#from Models.utils import masked_cross_entropy,fix_the_random,format_time,save_normal_model,save_bert_model
from sklearn.metrics import accuracy_score,f1_score
from tqdm import tqdm
'''from TensorDataset.datsetSplitter import createDatasetSplit
from TensorDataset.dataLoader import combine_features
from Preprocess.dataCollect import collect_data,set_name'''
from sklearn.metrics import accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
import matplotlib.pyplot as plt
import time
import os
from transformers import BertTokenizer
#import GPUtil
from sklearn.utils import class_weight
#import json
#from Models.bertModels import *
#from Models.otherModels import *
import sys
#import time
#from waiting import wait
from sklearn.preprocessing import LabelEncoder
import numpy as np
#import threading
#import argparse
#import ast

#from manual_training_inference import select_model
#from Models.utils import save_normal_model,save_bert_model,load_model
#from Models.utils import return_params
from transformers import DistilBertTokenizer


#from TensorDataset.dataLoader import custom_att_masks
#from keras.preprocessing.sequence import pad_sequences

#import seaborn as sns 
import matplotlib.pyplot as plt 
import numpy as np
import PIL.Image as Image
from torch import nn

from pyvene import embed_to_distrib, top_vals, format_token
from pyvene import (
    IntervenableModel,
    VanillaIntervention, Intervention,
    RepresentationConfig,
    IntervenableConfig,
    ConstantSourceIntervention,
    LocalistRepresentationIntervention
)
from pyvene import create_gpt2
#%config InlineBackend.figure_formats = ['svg']
from plotnine import (
    ggplot,
    geom_tile,
    aes,
    facet_wrap,
    theme,
    element_text,
    geom_bar,
    geom_hline,
    scale_y_log10,
    xlab, ylab, ylim,
    scale_y_discrete, scale_y_continuous, ggsave
)
from plotnine.scales import scale_y_reverse, scale_fill_cmap
from tqdm import tqdm
global device
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def create_bert(cache_dir=None):
    """Creates a GPT2 model, config, and tokenizer from the given name and revision"""
    from transformers import BertConfig

    config = BertConfig.from_pretrained("./cs772_proj/bert_base/checkpoint-3848/config.json")
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    gpt = AutoModelForSequenceClassification.from_pretrained("./cs772_proj/bert_base/checkpoint-3848", config=config, cache_dir=cache_dir)
    print("loaded model")
    return config, tokenizer, gpt
def interpret(text,label):
            titles={
            "block_output": "single restored layer in BERT",
            "mlp_activation": "center of interval of 5 patched mlp layer",
            "attention_output": "center of interval of 5 patched attn layer"
        }

            colors={
            "block_output": "Purples",
            "mlp_activation": "Greens",
            "attention_output": "Reds"
        } 
         
            device = "cuda:0" if torch.cuda.is_available() else "cpu"
            #config, tokenizer, gpt =  pv.create_llama(name="sharpbai/alpaca-7b-merged")
            config, tokenizer, gpt = create_bert()
            #config, tokenizer, gpt = create_gpt2(name="gpt2-xl")

            gpt.to(device)

            base = text
            inputs = [
                tokenizer(base, return_tensors="pt").to(device),
            ]
            #print(base)
            base_token = tokenizer.convert_ids_to_tokens(inputs[0]['input_ids'][0])
            res = gpt(**inputs[0])
            probabilities = nn.functional.softmax(res[0], dim=-1)
            if label=="hate":
                 l = 0
            elif label=="normal":
                 l=1
            else:l=2
            #print(probabilities)
            #print(res[0][0][0].item())
            #print(res)
            #distrib = embed_to_distrib(gpt, res.last_hidden_state, logits=False)
            #top_vals(tokenizer, distrib[0][-1], n=20)
            base = tokenizer(text, return_tensors="pt").to(device)
            config = corrupted_config(type(gpt))
            intervenable = IntervenableModel(config, gpt)
            _, counterfactual_outputs = intervenable(
                base, unit_locations={"base": ([[[0,1,2,3]]])}
            )
            #probabilities = nn.functional.softmax(counterfactual_outputs[0], dim=-1)
            #print(probabilities)
            for stream in ["block_output", "mlp_activation", "attention_output"]:
                data = []
                for layer_i in tqdm(range(gpt.config.num_hidden_layers)):
                    for pos_i in range(len(base_token)):
                        config = restore_corrupted_with_interval_config(
                            layer_i, stream, 
                            window=1 if stream == "block_output" else 5
                        )
                        
                        n_restores = len(config.representations) - 1
                        intervenable = IntervenableModel(config, gpt)
                        _, counterfactual_outputs = intervenable(
                            base,
                            [None] + [base]*n_restores,
                            {
                                "sources->base": (
                                    [None] + [[[pos_i]]]*n_restores,
                                    [[[0,1,2,3]]] + [[[pos_i]]]*n_restores,
                                )
                            },
                        )
                        #distrib = embed_to_distrib(
                            #gpt, counterfactual_outputs.last_hidden_state, logits=False
                        #)
                        #prob = distrib[0][-1][token].detach().cpu().item()
                        logits = counterfactual_outputs[0]
                        probabilities = nn.functional.softmax(logits, dim=-1)
                        prob_offense = probabilities[0][l].item()
                        data.append({"layer": layer_i, "pos": pos_i, "prob": prob_offense})
                df = pd.DataFrame(data)
                df.to_csv(f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.csv")
            for stream in ["block_output", "mlp_activation", "attention_output"]:
                    df = pd.read_csv(f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.csv")
                    df["layer"] = df["layer"].astype(int)
                    df["pos"] = df["pos"].astype(int)
                    prob_type = "p"+"("+label+")"
                    df[prob_type] = df["prob"].astype(float)
                    #custom_labels = ["imagine*","the*", "riots*", "if", "people", "actually", "got" ,"food" ,"boxes" ,"instead", "of" ,"ebt", "cards", "every", "ghetto", "in", "america", "would" ,"look", "like", "ferguson"]
                    custom_labels = base_token #["what*", "sort*", "of*", "white*","man" ,"or", "woman", "would", "vote", "for", "this", "nigger"]
                    #custom_labels = ["no*", "liberal*","congratulated*", "hindu*", "refugees", "post", "cab", "because", "they", "hate", "hindus"]
                    breaks = list(range(len(custom_labels)))#[0, 1, 2, 3, 4, 5, 6,7,8,9,10,11]


                    plot = (
                        ggplot(df, aes(x="layer", y="pos"))    

                        + geom_tile(aes(fill=prob_type))
                        + scale_fill_cmap(colors[stream]) + xlab(titles[stream])
                        + scale_y_reverse(
                            limits = (-0.5, len(custom_labels)), 
                            breaks=breaks, labels=custom_labels) 
                        + theme(figure_size=(6,9)) + ylab("") 
                        + theme(axis_text_y  = element_text(angle = 90, hjust = 1))
                    )
                    ggsave(
                        plot, filename=f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.png", dpi=200
                    )
                    if stream == "mlp_activation":
                        mlp_img_path = f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.png"
                    elif stream=="block_output":
                        bo_path = f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.png"
                    else:attention_path = f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.png"
            return mlp_img_path,bo_path,attention_path

def restore_corrupted_with_interval_config(
    layer, stream="mlp_activation", window=5, num_layers=12):
    start = max(0, layer - window // 2)
    end = min(num_layers, layer - (-window // 2))
    config = IntervenableConfig(
        representations=[
            RepresentationConfig(
                0,       # layer
                "block_input",  # intervention type
            ),
        ] + [
            RepresentationConfig(
                i,       # layer
                stream,  # intervention type
        ) for i in range(start, end)],
        intervention_types=\
            [NoiseIntervention]+[VanillaIntervention]*(end-start)
    )
    return config

class NoiseIntervention(ConstantSourceIntervention, LocalistRepresentationIntervention):
    def __init__(self, embed_dim, **kwargs):
        super().__init__()
        self.interchange_dim = embed_dim
        rs = np.random.RandomState(1)
        prng = lambda *shape: rs.randn(*shape)
        self.noise = torch.from_numpy(
            prng(1, 4, embed_dim)).to(device)
        self.noise_level = 0.7462981581687927 #0.3462981581687927

    def forward(self, base, source=None, subspaces=None):
        base[..., : self.interchange_dim] += self.noise * self.noise_level
        return base

    def __str__(self):
        return f"NoiseIntervention(embed_dim={self.embed_dim})"


def corrupted_config(model_type):
    config = IntervenableConfig(
        model_type=model_type,
        representations=[
            RepresentationConfig(
                0,              # layer
                "block_input",  # intervention type
            ),
        ],
        intervention_types=NoiseIntervention,
    )
    return config
def create_bert(cache_dir=None):
    """Creates a GPT2 model, config, and tokenizer from the given name and revision"""
    from transformers import BertConfig

    config = BertConfig.from_pretrained("./cs772_proj/bert_base/checkpoint-3848/config.json")
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    gpt = AutoModelForSequenceClassification.from_pretrained("./cs772_proj/bert_base/checkpoint-3848", config=config, cache_dir=cache_dir)
    print("loaded model")
    return config, tokenizer, gpt

# params = return_params('best_model_json/distilbert.json', 0.001 )
#params = return_params('best_model_json/distilbert.json', 1 )


'''embeddings=None
if(params['bert_tokens']):
    train,val,test=createDatasetSplit(params)       #update
else:
    train,val,test,vocab_own=createDatasetSplit(params)
    params['embed_size']=vocab_own.embeddings.shape[1]
    params['vocab_size']=vocab_own.embeddings.shape[0]
    embeddings=vocab_own.embeddings
if(params['auto_weights']):
    y_test = [ele[2] for ele in test] 
#         print(y_test)
    encoder = LabelEncoder()
    encoder.classes_ = np.load(params['class_names'],allow_pickle=True)
    params['weights']=class_weight.compute_class_weight('balanced',np.unique(y_test),y_test).astype('float32') 
    #params['weights']=np.array([len(y_test)/y_test.count(encoder.classes_[0]),len(y_test)/y_test.count(encoder.classes_[1]),len(y_test)/y_test.count(encoder.classes_[2])]).astype('float32') 

model=select_model(params,embeddings)
model = model.eval()
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')


classes_ = np.load('Data/classes.npy')
'''
def main_function(text,label):
    '''tokens = tokenizer.encode_plus(text)
    input_ids = pad_sequences(torch.tensor(tokens['input_ids']).unsqueeze(0),maxlen=int(params['max_length']),\
                               dtype="long", 
                          value=0, truncating="post", padding="post")
    # att_vals = pad_sequences(att_vals,maxlen=int(params['max_length']), dtype="float", 
    #                       value=0.0, truncating="post", padding="post")
    att_masks=custom_att_masks(input_ids)

    outs = model(torch.tensor(input_ids), 
            attention_mask=torch.tensor(att_masks, dtype=bool), 
            labels=None,
            device='cuda')
    
    text_tokens = tokenizer.convert_ids_to_tokens(input_ids.squeeze())

    text_tokens_ = text_tokens[:len(tokens['input_ids'])]

    print ('xyz')
    print (outs[1][5].shape)
    avg_attn = torch.mean(outs[1][5], dim=1)
    avg_attn_np = avg_attn[0,0,:len(tokens['input_ids'])].detach().squeeze().numpy()
    
    logits = outs[0]
    print (logits)
    print (np.sum(avg_attn_np))
    print (avg_attn_np)

    pred = torch.argmax(logits)
    pred_label = classes_[pred]
    '''
    ml_img_path,bo_img_path,atten_img_path = interpret(text,label)
    ml_im = Image.open(ml_img_path)
    bo_im = Image.open(bo_img_path)
    atten_im = Image.open(atten_img_path)

    yield ml_im, bo_im, atten_im

    '''
    sns.set_theme(rc={'figure.figsize':(30,1)})
  
    # creating subplot 
    fig, ax = plt.subplots() 
    
    # drawing heatmap on current axes 
    ax = sns.heatmap(np.expand_dims(avg_attn_np,0), annot= np.expand_dims(np.array(text_tokens_),0), \
                                            fmt="", annot_kws={'size': 10}, cmap="magma") 

    fig = ax.get_figure()
    fig.savefig("out.png" ,bbox_inches='tight')

    im = Image.open("out.png")

    yield im

    '''

    #return list(zip(text_tokens_ , avg_attn_np)), pred_label
    # return list(zip(text_tokens_[1:-1] , avg_attn_np[1:-1])) 
     

demo = gr.Interface(main_function,
                    inputs="textbox",
                    outputs="image",
                    theme = 'compact')

with gr.Blocks() as demo:
    with gr.Tab("Text Input"):
        text_input = gr.Textbox()
        label_input = gr.Textbox()
        text_button = gr.Button("Show")

    with gr.Tab("Interpretability"):
         with gr.Row():
              image_output1 = gr.Image()
              image_output2 = gr.Image()
              image_output3 = gr.Image()

    text_button.click(main_function, inputs=[text_input,label_input], outputs=[image_output1,image_output2,image_output3])




if __name__ == "__main__":
    demo.launch()