Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import transformers
|
4 |
+
import torch
|
5 |
+
#import neptune
|
6 |
+
#from knockknock import slack_sender
|
7 |
+
from transformers import *
|
8 |
+
#import glob
|
9 |
+
from transformers import BertTokenizer
|
10 |
+
from transformers import BertForSequenceClassification, AdamW, BertConfig
|
11 |
+
import random
|
12 |
+
import pandas as pd
|
13 |
+
from transformers import BertTokenizer
|
14 |
+
#from Models.utils import masked_cross_entropy,fix_the_random,format_time,save_normal_model,save_bert_model
|
15 |
+
from sklearn.metrics import accuracy_score,f1_score
|
16 |
+
from tqdm import tqdm
|
17 |
+
'''from TensorDataset.datsetSplitter import createDatasetSplit
|
18 |
+
from TensorDataset.dataLoader import combine_features
|
19 |
+
from Preprocess.dataCollect import collect_data,set_name'''
|
20 |
+
from sklearn.metrics import accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
import time
|
23 |
+
import os
|
24 |
+
from transformers import BertTokenizer
|
25 |
+
#import GPUtil
|
26 |
+
from sklearn.utils import class_weight
|
27 |
+
#import json
|
28 |
+
#from Models.bertModels import *
|
29 |
+
#from Models.otherModels import *
|
30 |
+
import sys
|
31 |
+
#import time
|
32 |
+
#from waiting import wait
|
33 |
+
from sklearn.preprocessing import LabelEncoder
|
34 |
+
import numpy as np
|
35 |
+
#import threading
|
36 |
+
#import argparse
|
37 |
+
#import ast
|
38 |
+
|
39 |
+
#from manual_training_inference import select_model
|
40 |
+
#from Models.utils import save_normal_model,save_bert_model,load_model
|
41 |
+
#from Models.utils import return_params
|
42 |
+
from transformers import DistilBertTokenizer
|
43 |
+
|
44 |
+
|
45 |
+
#from TensorDataset.dataLoader import custom_att_masks
|
46 |
+
#from keras.preprocessing.sequence import pad_sequences
|
47 |
+
|
48 |
+
#import seaborn as sns
|
49 |
+
import matplotlib.pyplot as plt
|
50 |
+
import numpy as np
|
51 |
+
import PIL.Image as Image
|
52 |
+
from torch import nn
|
53 |
+
|
54 |
+
from pyvene import embed_to_distrib, top_vals, format_token
|
55 |
+
from pyvene import (
|
56 |
+
IntervenableModel,
|
57 |
+
VanillaIntervention, Intervention,
|
58 |
+
RepresentationConfig,
|
59 |
+
IntervenableConfig,
|
60 |
+
ConstantSourceIntervention,
|
61 |
+
LocalistRepresentationIntervention
|
62 |
+
)
|
63 |
+
from pyvene import create_gpt2
|
64 |
+
#%config InlineBackend.figure_formats = ['svg']
|
65 |
+
from plotnine import (
|
66 |
+
ggplot,
|
67 |
+
geom_tile,
|
68 |
+
aes,
|
69 |
+
facet_wrap,
|
70 |
+
theme,
|
71 |
+
element_text,
|
72 |
+
geom_bar,
|
73 |
+
geom_hline,
|
74 |
+
scale_y_log10,
|
75 |
+
xlab, ylab, ylim,
|
76 |
+
scale_y_discrete, scale_y_continuous, ggsave
|
77 |
+
)
|
78 |
+
from plotnine.scales import scale_y_reverse, scale_fill_cmap
|
79 |
+
from tqdm import tqdm
|
80 |
+
global device
|
81 |
+
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
82 |
+
def create_bert(cache_dir=None):
|
83 |
+
"""Creates a GPT2 model, config, and tokenizer from the given name and revision"""
|
84 |
+
from transformers import BertConfig
|
85 |
+
|
86 |
+
config = BertConfig.from_pretrained("./cs77_proj/bert_base/checkpoint-3848/config.json")
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
88 |
+
gpt = AutoModelForSequenceClassification.from_pretrained("./cs77_proj/bert_base/checkpoint-3848", config=config, cache_dir=cache_dir)
|
89 |
+
print("loaded model")
|
90 |
+
return config, tokenizer, gpt
|
91 |
+
def interpret(text,label):
|
92 |
+
titles={
|
93 |
+
"block_output": "single restored layer in BERT",
|
94 |
+
"mlp_activation": "center of interval of 5 patched mlp layer",
|
95 |
+
"attention_output": "center of interval of 5 patched attn layer"
|
96 |
+
}
|
97 |
+
|
98 |
+
colors={
|
99 |
+
"block_output": "Purples",
|
100 |
+
"mlp_activation": "Greens",
|
101 |
+
"attention_output": "Reds"
|
102 |
+
}
|
103 |
+
|
104 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
105 |
+
#config, tokenizer, gpt = pv.create_llama(name="sharpbai/alpaca-7b-merged")
|
106 |
+
config, tokenizer, gpt = create_bert()
|
107 |
+
#config, tokenizer, gpt = create_gpt2(name="gpt2-xl")
|
108 |
+
|
109 |
+
gpt.to(device)
|
110 |
+
|
111 |
+
base = text
|
112 |
+
inputs = [
|
113 |
+
tokenizer(base, return_tensors="pt").to(device),
|
114 |
+
]
|
115 |
+
#print(base)
|
116 |
+
base_token = tokenizer.convert_ids_to_tokens(inputs[0]['input_ids'][0])
|
117 |
+
res = gpt(**inputs[0])
|
118 |
+
probabilities = nn.functional.softmax(res[0], dim=-1)
|
119 |
+
if label=="hate":
|
120 |
+
l = 0
|
121 |
+
elif label=="normal":
|
122 |
+
l=1
|
123 |
+
else:l=2
|
124 |
+
#print(probabilities)
|
125 |
+
#print(res[0][0][0].item())
|
126 |
+
#print(res)
|
127 |
+
#distrib = embed_to_distrib(gpt, res.last_hidden_state, logits=False)
|
128 |
+
#top_vals(tokenizer, distrib[0][-1], n=20)
|
129 |
+
base = tokenizer(text, return_tensors="pt").to(device)
|
130 |
+
config = corrupted_config(type(gpt))
|
131 |
+
intervenable = IntervenableModel(config, gpt)
|
132 |
+
_, counterfactual_outputs = intervenable(
|
133 |
+
base, unit_locations={"base": ([[[0,1,2,3]]])}
|
134 |
+
)
|
135 |
+
#probabilities = nn.functional.softmax(counterfactual_outputs[0], dim=-1)
|
136 |
+
#print(probabilities)
|
137 |
+
for stream in ["block_output", "mlp_activation", "attention_output"]:
|
138 |
+
data = []
|
139 |
+
for layer_i in tqdm(range(gpt.config.num_hidden_layers)):
|
140 |
+
for pos_i in range(len(base_token)):
|
141 |
+
config = restore_corrupted_with_interval_config(
|
142 |
+
layer_i, stream,
|
143 |
+
window=1 if stream == "block_output" else 5
|
144 |
+
)
|
145 |
+
|
146 |
+
n_restores = len(config.representations) - 1
|
147 |
+
intervenable = IntervenableModel(config, gpt)
|
148 |
+
_, counterfactual_outputs = intervenable(
|
149 |
+
base,
|
150 |
+
[None] + [base]*n_restores,
|
151 |
+
{
|
152 |
+
"sources->base": (
|
153 |
+
[None] + [[[pos_i]]]*n_restores,
|
154 |
+
[[[0,1,2,3]]] + [[[pos_i]]]*n_restores,
|
155 |
+
)
|
156 |
+
},
|
157 |
+
)
|
158 |
+
#distrib = embed_to_distrib(
|
159 |
+
#gpt, counterfactual_outputs.last_hidden_state, logits=False
|
160 |
+
#)
|
161 |
+
#prob = distrib[0][-1][token].detach().cpu().item()
|
162 |
+
logits = counterfactual_outputs[0]
|
163 |
+
probabilities = nn.functional.softmax(logits, dim=-1)
|
164 |
+
prob_offense = probabilities[0][l].item()
|
165 |
+
data.append({"layer": layer_i, "pos": pos_i, "prob": prob_offense})
|
166 |
+
df = pd.DataFrame(data)
|
167 |
+
df.to_csv(f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.csv")
|
168 |
+
for stream in ["block_output", "mlp_activation", "attention_output"]:
|
169 |
+
df = pd.read_csv(f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.csv")
|
170 |
+
df["layer"] = df["layer"].astype(int)
|
171 |
+
df["pos"] = df["pos"].astype(int)
|
172 |
+
prob_type = "p"+"("+label+")"
|
173 |
+
df[prob_type] = df["prob"].astype(float)
|
174 |
+
#custom_labels = ["imagine*","the*", "riots*", "if", "people", "actually", "got" ,"food" ,"boxes" ,"instead", "of" ,"ebt", "cards", "every", "ghetto", "in", "america", "would" ,"look", "like", "ferguson"]
|
175 |
+
custom_labels = base_token #["what*", "sort*", "of*", "white*","man" ,"or", "woman", "would", "vote", "for", "this", "nigger"]
|
176 |
+
#custom_labels = ["no*", "liberal*","congratulated*", "hindu*", "refugees", "post", "cab", "because", "they", "hate", "hindus"]
|
177 |
+
breaks = list(range(len(custom_labels)))#[0, 1, 2, 3, 4, 5, 6,7,8,9,10,11]
|
178 |
+
|
179 |
+
|
180 |
+
plot = (
|
181 |
+
ggplot(df, aes(x="layer", y="pos"))
|
182 |
+
|
183 |
+
+ geom_tile(aes(fill=prob_type))
|
184 |
+
+ scale_fill_cmap(colors[stream]) + xlab(titles[stream])
|
185 |
+
+ scale_y_reverse(
|
186 |
+
limits = (-0.5, len(custom_labels)),
|
187 |
+
breaks=breaks, labels=custom_labels)
|
188 |
+
+ theme(figure_size=(6,9)) + ylab("")
|
189 |
+
+ theme(axis_text_y = element_text(angle = 90, hjust = 1))
|
190 |
+
)
|
191 |
+
ggsave(
|
192 |
+
plot, filename=f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.png", dpi=200
|
193 |
+
)
|
194 |
+
if stream == "mlp_activation":
|
195 |
+
mlp_img_path = f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.png"
|
196 |
+
elif stream=="block_output":
|
197 |
+
bo_path = f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.png"
|
198 |
+
else:attention_path = f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.png"
|
199 |
+
return mlp_img_path,bo_path,attention_path
|
200 |
+
|
201 |
+
def restore_corrupted_with_interval_config(
|
202 |
+
layer, stream="mlp_activation", window=5, num_layers=12):
|
203 |
+
start = max(0, layer - window // 2)
|
204 |
+
end = min(num_layers, layer - (-window // 2))
|
205 |
+
config = IntervenableConfig(
|
206 |
+
representations=[
|
207 |
+
RepresentationConfig(
|
208 |
+
0, # layer
|
209 |
+
"block_input", # intervention type
|
210 |
+
),
|
211 |
+
] + [
|
212 |
+
RepresentationConfig(
|
213 |
+
i, # layer
|
214 |
+
stream, # intervention type
|
215 |
+
) for i in range(start, end)],
|
216 |
+
intervention_types=\
|
217 |
+
[NoiseIntervention]+[VanillaIntervention]*(end-start)
|
218 |
+
)
|
219 |
+
return config
|
220 |
+
|
221 |
+
class NoiseIntervention(ConstantSourceIntervention, LocalistRepresentationIntervention):
|
222 |
+
def __init__(self, embed_dim, **kwargs):
|
223 |
+
super().__init__()
|
224 |
+
self.interchange_dim = embed_dim
|
225 |
+
rs = np.random.RandomState(1)
|
226 |
+
prng = lambda *shape: rs.randn(*shape)
|
227 |
+
self.noise = torch.from_numpy(
|
228 |
+
prng(1, 4, embed_dim)).to(device)
|
229 |
+
self.noise_level = 0.7462981581687927 #0.3462981581687927
|
230 |
+
|
231 |
+
def forward(self, base, source=None, subspaces=None):
|
232 |
+
base[..., : self.interchange_dim] += self.noise * self.noise_level
|
233 |
+
return base
|
234 |
+
|
235 |
+
def __str__(self):
|
236 |
+
return f"NoiseIntervention(embed_dim={self.embed_dim})"
|
237 |
+
|
238 |
+
|
239 |
+
def corrupted_config(model_type):
|
240 |
+
config = IntervenableConfig(
|
241 |
+
model_type=model_type,
|
242 |
+
representations=[
|
243 |
+
RepresentationConfig(
|
244 |
+
0, # layer
|
245 |
+
"block_input", # intervention type
|
246 |
+
),
|
247 |
+
],
|
248 |
+
intervention_types=NoiseIntervention,
|
249 |
+
)
|
250 |
+
return config
|
251 |
+
def create_bert(cache_dir=None):
|
252 |
+
"""Creates a GPT2 model, config, and tokenizer from the given name and revision"""
|
253 |
+
from transformers import BertConfig
|
254 |
+
|
255 |
+
config = BertConfig.from_pretrained("./cs77_proj/bert_base/checkpoint-3848/config.json")
|
256 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
257 |
+
gpt = AutoModelForSequenceClassification.from_pretrained("./cs77_proj/bert_base/checkpoint-3848", config=config, cache_dir=cache_dir)
|
258 |
+
print("loaded model")
|
259 |
+
return config, tokenizer, gpt
|
260 |
+
|
261 |
+
# params = return_params('best_model_json/distilbert.json', 0.001 )
|
262 |
+
#params = return_params('best_model_json/distilbert.json', 1 )
|
263 |
+
|
264 |
+
|
265 |
+
'''embeddings=None
|
266 |
+
if(params['bert_tokens']):
|
267 |
+
train,val,test=createDatasetSplit(params) #update
|
268 |
+
else:
|
269 |
+
train,val,test,vocab_own=createDatasetSplit(params)
|
270 |
+
params['embed_size']=vocab_own.embeddings.shape[1]
|
271 |
+
params['vocab_size']=vocab_own.embeddings.shape[0]
|
272 |
+
embeddings=vocab_own.embeddings
|
273 |
+
if(params['auto_weights']):
|
274 |
+
y_test = [ele[2] for ele in test]
|
275 |
+
# print(y_test)
|
276 |
+
encoder = LabelEncoder()
|
277 |
+
encoder.classes_ = np.load(params['class_names'],allow_pickle=True)
|
278 |
+
params['weights']=class_weight.compute_class_weight('balanced',np.unique(y_test),y_test).astype('float32')
|
279 |
+
#params['weights']=np.array([len(y_test)/y_test.count(encoder.classes_[0]),len(y_test)/y_test.count(encoder.classes_[1]),len(y_test)/y_test.count(encoder.classes_[2])]).astype('float32')
|
280 |
+
|
281 |
+
model=select_model(params,embeddings)
|
282 |
+
model = model.eval()
|
283 |
+
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
284 |
+
|
285 |
+
|
286 |
+
classes_ = np.load('Data/classes.npy')
|
287 |
+
'''
|
288 |
+
def main_function(text,label):
|
289 |
+
'''tokens = tokenizer.encode_plus(text)
|
290 |
+
input_ids = pad_sequences(torch.tensor(tokens['input_ids']).unsqueeze(0),maxlen=int(params['max_length']),\
|
291 |
+
dtype="long",
|
292 |
+
value=0, truncating="post", padding="post")
|
293 |
+
# att_vals = pad_sequences(att_vals,maxlen=int(params['max_length']), dtype="float",
|
294 |
+
# value=0.0, truncating="post", padding="post")
|
295 |
+
att_masks=custom_att_masks(input_ids)
|
296 |
+
|
297 |
+
outs = model(torch.tensor(input_ids),
|
298 |
+
attention_mask=torch.tensor(att_masks, dtype=bool),
|
299 |
+
labels=None,
|
300 |
+
device='cuda')
|
301 |
+
|
302 |
+
text_tokens = tokenizer.convert_ids_to_tokens(input_ids.squeeze())
|
303 |
+
|
304 |
+
text_tokens_ = text_tokens[:len(tokens['input_ids'])]
|
305 |
+
|
306 |
+
print ('xyz')
|
307 |
+
print (outs[1][5].shape)
|
308 |
+
avg_attn = torch.mean(outs[1][5], dim=1)
|
309 |
+
avg_attn_np = avg_attn[0,0,:len(tokens['input_ids'])].detach().squeeze().numpy()
|
310 |
+
|
311 |
+
logits = outs[0]
|
312 |
+
print (logits)
|
313 |
+
print (np.sum(avg_attn_np))
|
314 |
+
print (avg_attn_np)
|
315 |
+
|
316 |
+
pred = torch.argmax(logits)
|
317 |
+
pred_label = classes_[pred]
|
318 |
+
'''
|
319 |
+
ml_img_path,bo_img_path,atten_img_path = interpret(text,label)
|
320 |
+
ml_im = Image.open(ml_img_path)
|
321 |
+
bo_im = Image.open(bo_img_path)
|
322 |
+
atten_im = Image.open(atten_img_path)
|
323 |
+
|
324 |
+
yield ml_im, bo_im, atten_im
|
325 |
+
|
326 |
+
'''
|
327 |
+
sns.set_theme(rc={'figure.figsize':(30,1)})
|
328 |
+
|
329 |
+
# creating subplot
|
330 |
+
fig, ax = plt.subplots()
|
331 |
+
|
332 |
+
# drawing heatmap on current axes
|
333 |
+
ax = sns.heatmap(np.expand_dims(avg_attn_np,0), annot= np.expand_dims(np.array(text_tokens_),0), \
|
334 |
+
fmt="", annot_kws={'size': 10}, cmap="magma")
|
335 |
+
|
336 |
+
fig = ax.get_figure()
|
337 |
+
fig.savefig("out.png" ,bbox_inches='tight')
|
338 |
+
|
339 |
+
im = Image.open("out.png")
|
340 |
+
|
341 |
+
yield im
|
342 |
+
|
343 |
+
'''
|
344 |
+
|
345 |
+
#return list(zip(text_tokens_ , avg_attn_np)), pred_label
|
346 |
+
# return list(zip(text_tokens_[1:-1] , avg_attn_np[1:-1]))
|
347 |
+
|
348 |
+
|
349 |
+
demo = gr.Interface(main_function,
|
350 |
+
inputs="textbox",
|
351 |
+
outputs="image",
|
352 |
+
theme = 'compact')
|
353 |
+
|
354 |
+
with gr.Blocks() as demo:
|
355 |
+
with gr.Tab("Text Input"):
|
356 |
+
text_input = gr.Textbox()
|
357 |
+
label_input = gr.Textbox()
|
358 |
+
text_button = gr.Button("Show")
|
359 |
+
|
360 |
+
with gr.Tab("Interpretability"):
|
361 |
+
with gr.Row():
|
362 |
+
image_output1 = gr.Image()
|
363 |
+
image_output2 = gr.Image()
|
364 |
+
image_output3 = gr.Image()
|
365 |
+
|
366 |
+
text_button.click(main_function, inputs=[text_input,label_input], outputs=[image_output1,image_output2,image_output3])
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
if __name__ == "__main__":
|
372 |
+
demo.launch()
|