shambhavi3 commited on
Commit
0d59a98
·
verified ·
1 Parent(s): 2865af6

update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -83,9 +83,9 @@ def create_bert(cache_dir=None):
83
  """Creates a GPT2 model, config, and tokenizer from the given name and revision"""
84
  from transformers import BertConfig
85
 
86
- config = BertConfig.from_pretrained("./cs77_proj/bert_base/checkpoint-3848/config.json")
87
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
88
- gpt = AutoModelForSequenceClassification.from_pretrained("./cs77_proj/bert_base/checkpoint-3848", config=config, cache_dir=cache_dir)
89
  print("loaded model")
90
  return config, tokenizer, gpt
91
  def interpret(text,label):
@@ -164,9 +164,9 @@ def interpret(text,label):
164
  prob_offense = probabilities[0][l].item()
165
  data.append({"layer": layer_i, "pos": pos_i, "prob": prob_offense})
166
  df = pd.DataFrame(data)
167
- df.to_csv(f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.csv")
168
  for stream in ["block_output", "mlp_activation", "attention_output"]:
169
- df = pd.read_csv(f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.csv")
170
  df["layer"] = df["layer"].astype(int)
171
  df["pos"] = df["pos"].astype(int)
172
  prob_type = "p"+"("+label+")"
@@ -189,13 +189,13 @@ def interpret(text,label):
189
  + theme(axis_text_y = element_text(angle = 90, hjust = 1))
190
  )
191
  ggsave(
192
- plot, filename=f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.png", dpi=200
193
  )
194
  if stream == "mlp_activation":
195
- mlp_img_path = f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.png"
196
  elif stream=="block_output":
197
- bo_path = f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.png"
198
- else:attention_path = f"./cs77_proj/tutorial_data/pyvene_rome_{stream}.png"
199
  return mlp_img_path,bo_path,attention_path
200
 
201
  def restore_corrupted_with_interval_config(
@@ -252,9 +252,9 @@ def create_bert(cache_dir=None):
252
  """Creates a GPT2 model, config, and tokenizer from the given name and revision"""
253
  from transformers import BertConfig
254
 
255
- config = BertConfig.from_pretrained("./cs77_proj/bert_base/checkpoint-3848/config.json")
256
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
257
- gpt = AutoModelForSequenceClassification.from_pretrained("./cs77_proj/bert_base/checkpoint-3848", config=config, cache_dir=cache_dir)
258
  print("loaded model")
259
  return config, tokenizer, gpt
260
 
 
83
  """Creates a GPT2 model, config, and tokenizer from the given name and revision"""
84
  from transformers import BertConfig
85
 
86
+ config = BertConfig.from_pretrained("./cs772_proj/bert_base/checkpoint-3848/config.json")
87
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
88
+ gpt = AutoModelForSequenceClassification.from_pretrained("./cs772_proj/bert_base/checkpoint-3848", config=config, cache_dir=cache_dir)
89
  print("loaded model")
90
  return config, tokenizer, gpt
91
  def interpret(text,label):
 
164
  prob_offense = probabilities[0][l].item()
165
  data.append({"layer": layer_i, "pos": pos_i, "prob": prob_offense})
166
  df = pd.DataFrame(data)
167
+ df.to_csv(f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.csv")
168
  for stream in ["block_output", "mlp_activation", "attention_output"]:
169
+ df = pd.read_csv(f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.csv")
170
  df["layer"] = df["layer"].astype(int)
171
  df["pos"] = df["pos"].astype(int)
172
  prob_type = "p"+"("+label+")"
 
189
  + theme(axis_text_y = element_text(angle = 90, hjust = 1))
190
  )
191
  ggsave(
192
+ plot, filename=f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.png", dpi=200
193
  )
194
  if stream == "mlp_activation":
195
+ mlp_img_path = f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.png"
196
  elif stream=="block_output":
197
+ bo_path = f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.png"
198
+ else:attention_path = f"./cs772_proj/tutorial_data/pyvene_rome_{stream}.png"
199
  return mlp_img_path,bo_path,attention_path
200
 
201
  def restore_corrupted_with_interval_config(
 
252
  """Creates a GPT2 model, config, and tokenizer from the given name and revision"""
253
  from transformers import BertConfig
254
 
255
+ config = BertConfig.from_pretrained("./cs772_proj/bert_base/checkpoint-3848/config.json")
256
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
257
+ gpt = AutoModelForSequenceClassification.from_pretrained("./cs772_proj/bert_base/checkpoint-3848", config=config, cache_dir=cache_dir)
258
  print("loaded model")
259
  return config, tokenizer, gpt
260