KingNish's picture
modified: app.py
b8a38aa
raw
history blame
23.8 kB
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import torch
is_shared_ui = True if "innova-ai/YuE-music-generator-demo" in os.environ['SPACE_ID'] else False
# Install required package
def install_flash_attn():
try:
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
print("flash-attn installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install flash-attn: {e}")
exit(1)
# Install flash-attn
install_flash_attn()
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id = "m-a-p/xcodec_mini_infer",
local_dir = "./xcodec_mini_infer"
)
# Add xcodec_mini_infer and descriptaudiocodec to sys path
import sys
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
import argparse
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
import uuid
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
import re
# --- Arguments and Model Loading from infer.py ---
parser = argparse.ArgumentParser()
# Model Configuration:
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.")
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.")
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.")
# Prompt
parser.add_argument("--genre_txt", type=str, default="", help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.") # Modified: removed required=True and using default=""
parser.add_argument("--lyrics_txt", type=str, default="", help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.") # Modified: removed required=True and using default=""
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.")
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.")
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.")
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.")
# Output
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.")
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.")
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.")
parser.add_argument("--cuda_idx", type=int, default=0)
# Config for xcodec and upsampler
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.')
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.')
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.')
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.')
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.')
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.')
args = parser.parse_args([]) # Modified: Pass empty list to parse_args to avoid command line parsing in Gradio
if args.use_audio_prompt and not args.audio_prompt_path:
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
model_name = args.stage1_model # Modified: Renamed 'model' to 'model_name' to avoid shadowing the loaded model later
cuda_idx = args.cuda_idx
max_new_tokens_config = args.max_new_tokens # Modified: Renamed 'max_new_tokens' to 'max_new_tokens_config' to avoid shadowing the Gradio input
stage1_output_dir = os.path.join(args.output_dir, f"stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
# load tokenizer and model
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
# Now you can use `device` to move your tensors or models to the GPU (if available)
print(f"Using device: {device}")
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(args.basic_model_config)
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(args.resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.to(device)
codec_model.eval()
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
def generate_music(genres, lyrics_content, num_segments_run, max_new_tokens_run): # Modified: Function to encapsulate generation logic
stage1_output_set_local = [] # Modified: Local variable to store output paths
lyrics = split_lyrics(lyrics_content)
# intruction
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
output_seq = None
# Here is suggested decoding config
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
# special tokens
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
raw_output = None
# Format text prompt
run_n_segments = min(num_segments_run+1, len(lyrics)) # Modified: Use passed num_segments_run
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
global model # Modified: Declare model as global to use the loaded model in Gradio scope
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <=1 else 1.2
if i==0:
continue
if i==1:
if args.use_audio_prompt:
audio_prompt = load_audio_mono(args.audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
# Format audio prompt
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] # 50 is tps of xcodec
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
# Use window slicing in case output sequence exceeds the context of model
max_context = 16384-max_new_tokens_config-1 # Modified: Use max_new_tokens_config
if input_ids.shape[-1] > max_context:
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
with torch.no_grad():
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens_run, # Modified: Use max_new_tokens_run
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
)
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
print(len(raw_output))
# save raw output and check sanity
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx)!=len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if args.use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_vocal_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_instrumental_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set_local.append(vocal_save_path)
stage1_output_set_local.append(inst_save_path)
# offload model - Removed offloading for gradio integration to keep model loaded
# if not args.disable_offload_model:
# model.cpu()
# del model
# torch.cuda.empty_cache()
print("Converting to Audio...")
# convert audio tokens to audio
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# reconstruct tracks
recons_output_dir = os.path.join(args.output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local
codec_result = np.load(npy)
decodec_rlt=[]
with torch.no_grad():
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
# mix tracks
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
# find pair
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
# mix
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(inst_path)
instrumental_stem, _ = sf.read(vocal_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
except Exception as e:
print(e)
# vocoder to upsample audios
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path)
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder')
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
os.makedirs(vocoder_mix_dir, exist_ok=True)
os.makedirs(vocoder_stems_dir, exist_ok=True)
instrumental_output = None # Initialize outside try block
vocal_output = None # Initialize outside try block
recons_mix_path = "" # Initialize outside try block
for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local
if 'instrumental' in npy:
# Process instrumental
instrumental_output = process_audio(
npy,
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
args.rescale,
args,
inst_decoder,
codec_model
)
else:
# Process vocal
vocal_output = process_audio(
npy,
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
args.rescale,
args,
vocal_decoder,
codec_model
)
# mix tracks
try:
mix_output = instrumental_output + vocal_output
recons_mix_path_temp = os.path.join(recons_mix_dir, os.path.basename(recons_mix)) # Use recons_mix from previous step
save_audio(mix_output, recons_mix_path_temp, 44100, args.rescale)
print(f"Created mix: {recons_mix_path_temp}")
recons_mix_path = recons_mix_path_temp # Assign to outer scope variable
except RuntimeError as e:
print(e)
print(f"mix {recons_mix_path} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
# Post process
final_output_path = os.path.join(args.output_dir, os.path.basename(recons_mix_path)) # Use recons_mix_path from previous step
replace_low_freq_with_energy_matched(
a_file=recons_mix_path, # 16kHz # Use recons_mix_path
b_file=recons_mix_path_temp, # 48kHz # Use recons_mix_path_temp
c_file=final_output_path,
cutoff_freq=5500.0
)
print("All process Done")
return final_output_path # Modified: Return the final output audio path
# Gradio UI
model = AutoModelForCausalLM.from_pretrained( # Load model here for Gradio scope
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
).to(device).eval() # Modified: Load model globally for Gradio to access
def empty_output_folder(output_dir):
# List all files in the output directory
files = os.listdir(output_dir)
# Iterate over the files and remove them
for file in files:
file_path = os.path.join(output_dir, file)
try:
if os.path.isdir(file_path):
# If it's a directory, remove it recursively
shutil.rmtree(file_path)
else:
# If it's a file, delete it
os.remove(file_path)
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
@spaces.GPU(duration=120)
def infer_gradio(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200): # Modified: Renamed infer to infer_gradio to avoid conflict
# Ensure the output folder exists
output_dir = "./output"
os.makedirs(output_dir, exist_ok=True)
print(f"Output folder ensured at: {output_dir}")
empty_output_folder(output_dir)
# Call the generation function directly
output_audio_path = generate_music(genre_txt_content, lyrics_txt_content, int(num_segments), int(max_new_tokens)) # Modified: Call generate_music and pass num_segments and max_new_tokens as int
if output_audio_path and os.path.exists(output_audio_path):
print("Generated audio file:", output_audio_path)
return output_audio_path
else:
print("No audio file generated or path is invalid.")
return None
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
if is_shared_ui:
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="3000", step=500, value=500, interactive=True) # increase it after testing
else:
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples = [
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs = [genre_txt, lyrics_txt],
outputs = [music_out],
cache_examples = False,
# cache_mode="lazy",
fn=infer_gradio # Modified: Use infer_gradio
)
submit_btn.click(
fn = infer_gradio, # Modified: Use infer_gradio
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs = [music_out]
)
demo.queue().launch(show_api=False, show_error=True)