import gradio as gr import subprocess import os import shutil import tempfile import spaces from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList import torch is_shared_ui = True if "innova-ai/YuE-music-generator-demo" in os.environ['SPACE_ID'] else False # Install required package def install_flash_attn(): try: print("Installing flash-attn...") # Install flash attention subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) print("flash-attn installed successfully!") except subprocess.CalledProcessError as e: print(f"Failed to install flash-attn: {e}") exit(1) # Install flash-attn install_flash_attn() from huggingface_hub import snapshot_download # Create xcodec_mini_infer folder folder_path = './xcodec_mini_infer' # Create the folder if it doesn't exist if not os.path.exists(folder_path): os.mkdir(folder_path) print(f"Folder created at: {folder_path}") else: print(f"Folder already exists at: {folder_path}") snapshot_download( repo_id = "m-a-p/xcodec_mini_infer", local_dir = "./xcodec_mini_infer" ) # Add xcodec_mini_infer and descriptaudiocodec to sys path import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) import argparse import numpy as np import json from omegaconf import OmegaConf import torchaudio from torchaudio.transforms import Resample import soundfile as sf import uuid from tqdm import tqdm from einops import rearrange from codecmanipulator import CodecManipulator from mmtokenizer import _MMSentencePieceTokenizer from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList import glob import time import copy from collections import Counter from models.soundstream_hubert_new import SoundStream from vocoder import build_codec_model, process_audio from post_process_audio import replace_low_freq_with_energy_matched import re # --- Arguments and Model Loading from infer.py --- parser = argparse.ArgumentParser() # Model Configuration: parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.") parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.") parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.") # Prompt parser.add_argument("--genre_txt", type=str, default="", help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.") # Modified: removed required=True and using default="" parser.add_argument("--lyrics_txt", type=str, default="", help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.") # Modified: removed required=True and using default="" parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.") parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.") parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.") parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.") # Output parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.") parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.") parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.") parser.add_argument("--cuda_idx", type=int, default=0) # Config for xcodec and upsampler parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.') parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.') parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.') parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.') parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.') parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.') args = parser.parse_args([]) # Modified: Pass empty list to parse_args to avoid command line parsing in Gradio if args.use_audio_prompt and not args.audio_prompt_path: raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") model_name = args.stage1_model # Modified: Renamed 'model' to 'model_name' to avoid shadowing the loaded model later cuda_idx = args.cuda_idx max_new_tokens_config = args.max_new_tokens # Modified: Renamed 'max_new_tokens' to 'max_new_tokens_config' to avoid shadowing the Gradio input stage1_output_dir = os.path.join(args.output_dir, f"stage1") os.makedirs(stage1_output_dir, exist_ok=True) # load tokenizer and model device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu") # Now you can use `device` to move your tensors or models to the GPU (if available) print(f"Using device: {device}") mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") codectool = CodecManipulator("xcodec", 0, 1) model_config = OmegaConf.load(args.basic_model_config) codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) parameter_dict = torch.load(args.resume_path, map_location='cpu') codec_model.load_state_dict(parameter_dict['codec_model']) codec_model.to(device) codec_model.eval() class BlockTokenRangeProcessor(LogitsProcessor): def __init__(self, start_id, end_id): self.blocked_token_ids = list(range(start_id, end_id)) def __call__(self, input_ids, scores): scores[:, self.blocked_token_ids] = -float("inf") return scores def load_audio_mono(filepath, sampling_rate=16000): audio, sr = torchaudio.load(filepath) # Convert to mono audio = torch.mean(audio, dim=0, keepdim=True) # Resample if needed if sr != sampling_rate: resampler = Resample(orig_freq=sr, new_freq=sampling_rate) audio = resampler(audio) return audio def split_lyrics(lyrics): pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" segments = re.findall(pattern, lyrics, re.DOTALL) structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] return structured_lyrics def generate_music(genres, lyrics_content, num_segments_run, max_new_tokens_run): # Modified: Function to encapsulate generation logic stage1_output_set_local = [] # Modified: Local variable to store output paths lyrics = split_lyrics(lyrics_content) # intruction full_lyrics = "\n".join(lyrics) prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] prompt_texts += lyrics random_id = uuid.uuid4() output_seq = None # Here is suggested decoding config top_p = 0.93 temperature = 1.0 repetition_penalty = 1.2 # special tokens start_of_segment = mmtokenizer.tokenize('[start_of_segment]') end_of_segment = mmtokenizer.tokenize('[end_of_segment]') raw_output = None # Format text prompt run_n_segments = min(num_segments_run+1, len(lyrics)) # Modified: Use passed num_segments_run print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) global model # Modified: Declare model as global to use the loaded model in Gradio scope for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') guidance_scale = 1.5 if i <=1 else 1.2 if i==0: continue if i==1: if args.use_audio_prompt: audio_prompt = load_audio_mono(args.audio_prompt_path) audio_prompt.unsqueeze_(0) with torch.no_grad(): raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) raw_codes = raw_codes.transpose(0, 1) raw_codes = raw_codes.cpu().numpy().astype(np.int16) # Format audio prompt code_ids = codectool.npy2ids(raw_codes[0]) audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] # 50 is tps of xcodec audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids else: head_id = mmtokenizer.tokenize(prompt_texts[0]) prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids else: prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids # Use window slicing in case output sequence exceeds the context of model max_context = 16384-max_new_tokens_config-1 # Modified: Use max_new_tokens_config if input_ids.shape[-1] > max_context: print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') input_ids = input_ids[:, -(max_context):] with torch.no_grad(): output_seq = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens_run, # Modified: Use max_new_tokens_run min_new_tokens=100, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=mmtokenizer.eoa, pad_token_id=mmtokenizer.eoa, logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), guidance_scale=guidance_scale, ) if output_seq[0][-1].item() != mmtokenizer.eoa: tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) output_seq = torch.cat((output_seq, tensor_eoa), dim=1) if i > 1: raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) else: raw_output = output_seq print(len(raw_output)) # save raw output and check sanity ids = raw_output[0].cpu().numpy() soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() if len(soa_idx)!=len(eoa_idx): raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') vocals = [] instrumentals = [] range_begin = 1 if args.use_audio_prompt else 0 for i in range(range_begin, len(soa_idx)): codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] if codec_ids[0] == 32016: codec_ids = codec_ids[1:] codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0]) vocals.append(vocals_ids) instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1]) instrumentals.append(instrumentals_ids) vocals = np.concatenate(vocals, axis=1) instrumentals = np.concatenate(instrumentals, axis=1) vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_vocal_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_instrumental_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename np.save(vocal_save_path, vocals) np.save(inst_save_path, instrumentals) stage1_output_set_local.append(vocal_save_path) stage1_output_set_local.append(inst_save_path) # offload model - Removed offloading for gradio integration to keep model loaded # if not args.disable_offload_model: # model.cpu() # del model # torch.cuda.empty_cache() print("Converting to Audio...") # convert audio tokens to audio def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): folder_path = os.path.dirname(path) if not os.path.exists(folder_path): os.makedirs(folder_path) limit = 0.99 max_val = wav.abs().max() wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) # reconstruct tracks recons_output_dir = os.path.join(args.output_dir, "recons") recons_mix_dir = os.path.join(recons_output_dir, 'mix') os.makedirs(recons_mix_dir, exist_ok=True) tracks = [] for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local codec_result = np.load(npy) decodec_rlt=[] with torch.no_grad(): decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)) decoded_waveform = decoded_waveform.cpu().squeeze(0) decodec_rlt.append(torch.as_tensor(decoded_waveform)) decodec_rlt = torch.cat(decodec_rlt, dim=-1) save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") tracks.append(save_path) save_audio(decodec_rlt, save_path, 16000) # mix tracks for inst_path in tracks: try: if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ and 'instrumental' in inst_path: # find pair vocal_path = inst_path.replace('instrumental', 'vocal') if not os.path.exists(vocal_path): continue # mix recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) vocal_stem, sr = sf.read(inst_path) instrumental_stem, _ = sf.read(vocal_path) mix_stem = (vocal_stem + instrumental_stem) / 1 sf.write(recons_mix, mix_stem, sr) except Exception as e: print(e) # vocoder to upsample audios vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path) vocoder_output_dir = os.path.join(args.output_dir, 'vocoder') vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') os.makedirs(vocoder_mix_dir, exist_ok=True) os.makedirs(vocoder_stems_dir, exist_ok=True) instrumental_output = None # Initialize outside try block vocal_output = None # Initialize outside try block recons_mix_path = "" # Initialize outside try block for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local if 'instrumental' in npy: # Process instrumental instrumental_output = process_audio( npy, os.path.join(vocoder_stems_dir, 'instrumental.mp3'), args.rescale, args, inst_decoder, codec_model ) else: # Process vocal vocal_output = process_audio( npy, os.path.join(vocoder_stems_dir, 'vocal.mp3'), args.rescale, args, vocal_decoder, codec_model ) # mix tracks try: mix_output = instrumental_output + vocal_output recons_mix_path_temp = os.path.join(recons_mix_dir, os.path.basename(recons_mix)) # Use recons_mix from previous step save_audio(mix_output, recons_mix_path_temp, 44100, args.rescale) print(f"Created mix: {recons_mix_path_temp}") recons_mix_path = recons_mix_path_temp # Assign to outer scope variable except RuntimeError as e: print(e) print(f"mix {recons_mix_path} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") # Post process final_output_path = os.path.join(args.output_dir, os.path.basename(recons_mix_path)) # Use recons_mix_path from previous step replace_low_freq_with_energy_matched( a_file=recons_mix_path, # 16kHz # Use recons_mix_path b_file=recons_mix_path_temp, # 48kHz # Use recons_mix_path_temp c_file=final_output_path, cutoff_freq=5500.0 ) print("All process Done") return final_output_path # Modified: Return the final output audio path # Gradio UI model = AutoModelForCausalLM.from_pretrained( # Load model here for Gradio scope "m-a-p/YuE-s1-7B-anneal-en-cot", torch_dtype=torch.float16, attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn ).to(device).eval() # Modified: Load model globally for Gradio to access def empty_output_folder(output_dir): # List all files in the output directory files = os.listdir(output_dir) # Iterate over the files and remove them for file in files: file_path = os.path.join(output_dir, file) try: if os.path.isdir(file_path): # If it's a directory, remove it recursively shutil.rmtree(file_path) else: # If it's a file, delete it os.remove(file_path) except Exception as e: print(f"Error deleting file {file_path}: {e}") @spaces.GPU(duration=120) def infer_gradio(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200): # Modified: Renamed infer to infer_gradio to avoid conflict # Ensure the output folder exists output_dir = "./output" os.makedirs(output_dir, exist_ok=True) print(f"Output folder ensured at: {output_dir}") empty_output_folder(output_dir) # Call the generation function directly output_audio_path = generate_music(genre_txt_content, lyrics_txt_content, int(num_segments), int(max_new_tokens)) # Modified: Call generate_music and pass num_segments and max_new_tokens as int if output_audio_path and os.path.exists(output_audio_path): print("Generated audio file:", output_audio_path) return output_audio_path else: print("No audio file generated or path is invalid.") return None with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") gr.HTML("""
Duplicate this Space
""") with gr.Row(): with gr.Column(): genre_txt = gr.Textbox(label="Genre") lyrics_txt = gr.Textbox(label="Lyrics") with gr.Column(): if is_shared_ui: num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="3000", step=500, value=500, interactive=True) # increase it after testing else: num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True) max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True) submit_btn = gr.Button("Submit") music_out = gr.Audio(label="Audio Result") gr.Examples( examples = [ [ "female blues airy vocal bright vocal piano sad romantic guitar jazz", """[verse] In the quiet of the evening, shadows start to fall Whispers of the night wind echo through the hall Lost within the silence, I hear your gentle voice Guiding me back homeward, making my heart rejoice [chorus] Don't let this moment fade, hold me close tonight With you here beside me, everything's alright Can't imagine life alone, don't want to let you go Stay with me forever, let our love just flow """ ], [ "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", """[verse] Woke up in the morning, sun is shining bright Chasing all my dreams, gotta get my mind right City lights are fading, but my vision's clear Got my team beside me, no room for fear Walking through the streets, beats inside my head Every step I take, closer to the bread People passing by, they don't understand Building up my future with my own two hands [chorus] This is my life, and I'm aiming for the top Never gonna quit, no, I'm never gonna stop Through the highs and lows, I'mma keep it real Living out my dreams with this mic and a deal """ ] ], inputs = [genre_txt, lyrics_txt], outputs = [music_out], cache_examples = False, # cache_mode="lazy", fn=infer_gradio # Modified: Use infer_gradio ) submit_btn.click( fn = infer_gradio, # Modified: Use infer_gradio inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens], outputs = [music_out] ) demo.queue().launch(show_api=False, show_error=True)