topic_modelling / funcs /representation_model.py
seanpedrickcase's picture
Updated packages. Improve hierarchy vis. Better models - mixedbread and phi3. Now option to split texts into sentences before modelling.
04a15c5
raw
history blame
6.8 kB
import os
from bertopic.representation import LlamaCPP
from llama_cpp import Llama
from pydantic import BaseModel
import torch.cuda
from huggingface_hub import hf_hub_download, snapshot_download
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation
from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start, phi3_prompt, phi3_start
random_seed = 42
chosen_prompt = phi3_prompt #open_hermes_prompt # stablelm_prompt
chosen_start_tag = phi3_start #open_hermes_start # stablelm_start
# Currently set n_gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
if torch.cuda.is_available():
torch_device = "gpu"
low_resource_mode = "No"
n_gpu_layers = 100
else:
torch_device = "cpu"
low_resource_mode = "Yes"
n_gpu_layers = 0
#low_resource_mode = "No" # Override for testing
#print("Running on device:", torch_device)
n_threads = torch.get_num_threads()
print("CPU n_threads:", n_threads)
# Default Model parameters
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repeat_penalty: float = 1.1
last_n_tokens_size: int = 128
max_tokens: int = 500
seed: int = 42
reset: bool = True
stream: bool = False
n_threads: int = n_threads
n_batch:int = 256
n_ctx:int = 8192 #4096. # Set to 8192 just to avoid any exceeded context window issues
sample:bool = True
trust_remote_code:bool =True
class LLamacppInitConfigGpu(BaseModel):
last_n_tokens_size: int
seed: int
n_threads: int
n_batch: int
n_ctx: int
n_gpu_layers: int
temperature: float
top_k: int
top_p: float
repeat_penalty: float
max_tokens: int
reset: bool
stream: bool
stop: str
trust_remote_code:bool
def update_gpu(self, new_value: int):
self.n_gpu_layers = new_value
llm_config = LLamacppInitConfigGpu(last_n_tokens_size=last_n_tokens_size,
seed=seed,
n_threads=n_threads,
n_batch=n_batch,
n_ctx=n_ctx,
n_gpu_layers=n_gpu_layers,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
max_tokens=max_tokens,
reset=reset,
stream=stream,
stop=chosen_start_tag,
trust_remote_code=trust_remote_code)
## Create representation model parameters ##
# KeyBERT
keybert = KeyBERTInspired(random_state=random_seed)
# MMR
mmr = MaximalMarginalRelevance(diversity=0.5)
base_rep = BaseRepresentation()
# Find model file
def find_model_file(hf_model_name, hf_model_file, search_folder, sub_folder):
hf_loc = search_folder #os.environ["HF_HOME"]
hf_sub_loc = search_folder + sub_folder #os.environ["HF_HOME"]
if sub_folder == "/hub/":
hf_model_name_path = hf_sub_loc + 'models--' + hf_model_name.replace("/","--")
else:
hf_model_name_path = hf_sub_loc
def find_file(root_folder, file_name):
for root, dirs, files in os.walk(root_folder):
if file_name in files:
return os.path.join(root, file_name)
return None
# Example usage
folder_path = hf_model_name_path # Replace with your folder path
file_to_find = hf_model_file # Replace with the file name you're looking for
print("Searching for model file", hf_model_file, "in:", hf_model_name_path)
found_file = find_file(folder_path, file_to_find) # os.environ["HF_HOME"]
return found_file
def create_representation_model(representation_type, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode):
if representation_type == "LLM":
print("Generating LLM representation")
# Use llama.cpp to load in model
# del os.environ["HF_HOME"]
# Check for HF_HOME environment variable and supply a default value if it's not found (typical location for huggingface models)
# Get HF_HOME environment variable or default to "~/.cache/huggingface/hub"
base_folder = "model" #"~/.cache/huggingface/hub"
hf_home_value = os.getenv("HF_HOME", base_folder)
# Expand the user symbol '~' to the full home directory path
if "~" in base_folder:
hf_home_value = os.path.expanduser(hf_home_value)
# Check if the directory exists, create it if it doesn't
if not os.path.exists(hf_home_value):
os.makedirs(hf_home_value)
print("Searching base folder for model:", hf_home_value)
found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/rep/")
if found_file:
print(f"Model file found in model folder: {found_file}")
else:
found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/hub/")
if not found_file:
error = "File not found in HF hub directory or in local model file."
print(error, " Downloading model from hub")
found_file = hf_hub_download(repo_id=hf_model_name, filename=hf_model_file)#, local_dir=hf_home_value) # cache_dir
print("Downloaded model from Huggingface Hub to: ", found_file)
print("Loading representation model with", llm_config.n_gpu_layers, "layers allocated to GPU.")
llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx,seed=seed) #**llm_config.model_dump())# rope_freq_scale=0.5,
#print(llm.n_gpu_layers)
print("Chosen prompt:", chosen_prompt)
llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump())
# All representation models
representation_model = {
"LLM": llm_model
}
elif representation_type == "KeyBERT":
print("Generating KeyBERT representation")
#representation_model = {"mmr": mmr}
representation_model = {"KeyBERT": keybert}
elif representation_type == "MMR":
print("Generating MMR representation")
representation_model = {"MMR": mmr}
else:
print("Generating default representation type")
representation_model = {"Default":base_rep}
# Deprecated example using CTransformers. This package is not really used anymore
#model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(llm_config))
#tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
#generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
# Text generation with Llama 2
#mistral_capybara = TextGeneration(generator, prompt=capybara_prompt)
#mistral_hermes = TextGeneration(generator, prompt=open_hermes_prompt)
return representation_model