import os from bertopic.representation import LlamaCPP from llama_cpp import Llama from pydantic import BaseModel import torch.cuda from huggingface_hub import hf_hub_download, snapshot_download from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start, phi3_prompt, phi3_start random_seed = 42 chosen_prompt = phi3_prompt #open_hermes_prompt # stablelm_prompt chosen_start_tag = phi3_start #open_hermes_start # stablelm_start # Currently set n_gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda if torch.cuda.is_available(): torch_device = "gpu" low_resource_mode = "No" n_gpu_layers = 100 else: torch_device = "cpu" low_resource_mode = "Yes" n_gpu_layers = 0 #low_resource_mode = "No" # Override for testing #print("Running on device:", torch_device) n_threads = torch.get_num_threads() print("CPU n_threads:", n_threads) # Default Model parameters temperature: float = 0.1 top_k: int = 3 top_p: float = 1 repeat_penalty: float = 1.1 last_n_tokens_size: int = 128 max_tokens: int = 500 seed: int = 42 reset: bool = True stream: bool = False n_threads: int = n_threads n_batch:int = 256 n_ctx:int = 8192 #4096. # Set to 8192 just to avoid any exceeded context window issues sample:bool = True trust_remote_code:bool =True class LLamacppInitConfigGpu(BaseModel): last_n_tokens_size: int seed: int n_threads: int n_batch: int n_ctx: int n_gpu_layers: int temperature: float top_k: int top_p: float repeat_penalty: float max_tokens: int reset: bool stream: bool stop: str trust_remote_code:bool def update_gpu(self, new_value: int): self.n_gpu_layers = new_value llm_config = LLamacppInitConfigGpu(last_n_tokens_size=last_n_tokens_size, seed=seed, n_threads=n_threads, n_batch=n_batch, n_ctx=n_ctx, n_gpu_layers=n_gpu_layers, temperature=temperature, top_k=top_k, top_p=top_p, repeat_penalty=repeat_penalty, max_tokens=max_tokens, reset=reset, stream=stream, stop=chosen_start_tag, trust_remote_code=trust_remote_code) ## Create representation model parameters ## # KeyBERT keybert = KeyBERTInspired(random_state=random_seed) # MMR mmr = MaximalMarginalRelevance(diversity=0.5) base_rep = BaseRepresentation() # Find model file def find_model_file(hf_model_name, hf_model_file, search_folder, sub_folder): hf_loc = search_folder #os.environ["HF_HOME"] hf_sub_loc = search_folder + sub_folder #os.environ["HF_HOME"] if sub_folder == "/hub/": hf_model_name_path = hf_sub_loc + 'models--' + hf_model_name.replace("/","--") else: hf_model_name_path = hf_sub_loc def find_file(root_folder, file_name): for root, dirs, files in os.walk(root_folder): if file_name in files: return os.path.join(root, file_name) return None # Example usage folder_path = hf_model_name_path # Replace with your folder path file_to_find = hf_model_file # Replace with the file name you're looking for print("Searching for model file", hf_model_file, "in:", hf_model_name_path) found_file = find_file(folder_path, file_to_find) # os.environ["HF_HOME"] return found_file def create_representation_model(representation_type, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode): if representation_type == "LLM": print("Generating LLM representation") # Use llama.cpp to load in model # del os.environ["HF_HOME"] # Check for HF_HOME environment variable and supply a default value if it's not found (typical location for huggingface models) # Get HF_HOME environment variable or default to "~/.cache/huggingface/hub" base_folder = "model" #"~/.cache/huggingface/hub" hf_home_value = os.getenv("HF_HOME", base_folder) # Expand the user symbol '~' to the full home directory path if "~" in base_folder: hf_home_value = os.path.expanduser(hf_home_value) # Check if the directory exists, create it if it doesn't if not os.path.exists(hf_home_value): os.makedirs(hf_home_value) print("Searching base folder for model:", hf_home_value) found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/rep/") if found_file: print(f"Model file found in model folder: {found_file}") else: found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/hub/") if not found_file: error = "File not found in HF hub directory or in local model file." print(error, " Downloading model from hub") found_file = hf_hub_download(repo_id=hf_model_name, filename=hf_model_file)#, local_dir=hf_home_value) # cache_dir print("Downloaded model from Huggingface Hub to: ", found_file) print("Loading representation model with", llm_config.n_gpu_layers, "layers allocated to GPU.") llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx,seed=seed) #**llm_config.model_dump())# rope_freq_scale=0.5, #print(llm.n_gpu_layers) print("Chosen prompt:", chosen_prompt) llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump()) # All representation models representation_model = { "LLM": llm_model } elif representation_type == "KeyBERT": print("Generating KeyBERT representation") #representation_model = {"mmr": mmr} representation_model = {"KeyBERT": keybert} elif representation_type == "MMR": print("Generating MMR representation") representation_model = {"MMR": mmr} else: print("Generating default representation type") representation_model = {"Default":base_rep} # Deprecated example using CTransformers. This package is not really used anymore #model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(llm_config)) #tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9") #generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer) # Text generation with Llama 2 #mistral_capybara = TextGeneration(generator, prompt=capybara_prompt) #mistral_hermes = TextGeneration(generator, prompt=open_hermes_prompt) return representation_model